IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0806.2570.html
   My bibliography  Save this paper

Optimal investment and consumption in a Black--Scholes market with L\'evy-driven stochastic coefficients

Author

Listed:
  • {L}ukasz Delong
  • Claudia Kluppelberg

Abstract

In this paper, we investigate an optimal investment and consumption problem for an investor who trades in a Black--Scholes financial market with stochastic coefficients driven by a non-Gaussian Ornstein--Uhlenbeck process. We assume that an agent makes investment and consumption decisions based on a power utility function. By applying the usual separation method in the variables, we are faced with the problem of solving a nonlinear (semilinear) first-order partial integro-differential equation. A candidate solution is derived via the Feynman--Kac representation. By using the properties of an operator defined in a suitable function space, we prove uniqueness and smoothness of the solution. Optimality is verified by applying a classical verification theorem.

Suggested Citation

  • {L}ukasz Delong & Claudia Kluppelberg, 2008. "Optimal investment and consumption in a Black--Scholes market with L\'evy-driven stochastic coefficients," Papers 0806.2570, arXiv.org.
  • Handle: RePEc:arx:papers:0806.2570
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0806.2570
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fred Espen Benth & Kenneth Hvistendahl Karlsen & Kristin Reikvam, 2003. "Merton's portfolio optimization problem in a Black and Scholes market with non‐Gaussian stochastic volatility of Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 215-244, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Shen & Juliang Yin, 2022. "Optimal Investment and Risk Control Strategies for an Insurer Subject to a Stochastic Economic Factor in a Lévy Market," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2913-2931, December.
    2. Belkacem Berdjane & Sergei Pergamenshchikov, 2012. "Sequential $\delta$-optimal consumption and investment for stochastic volatility markets with unknown parameters," Papers 1210.5111, arXiv.org, revised May 2015.
    3. Jan Kallsen & Johannes Muhle-Karbe, 2009. "Utility maximization in models with conditionally independent increments," Papers 0911.3608, arXiv.org.
    4. Hiroaki Hata & Jun Sekine, 2017. "Risk-Sensitive Asset Management in a Wishart-Autoregressive Factor Model with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 221-252, September.
    5. Yacine Aït-Sahalia & Thomas Robert Hurd, 2016. "Portfolio Choice in Markets with Contagion," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 1-28.
    6. E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
    7. Liu, Guo & Jin, Zhuo & Li, Shuanming, 2021. "Optimal investment, consumption, and life insurance strategies under a mutual-exciting contagious market," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 508-524.
    8. Chen, Xu & Yang, Xiang-qun, 2015. "Optimal consumption and investment problem with random horizon in a BMAP model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 197-205.
    9. Lijun Bo & Shihua Wang & Xiang Yu, 2021. "Mean Field Game of Optimal Relative Investment with Jump Risk," Papers 2108.00799, arXiv.org, revised Feb 2023.
    10. Ziehaus Christina, 2012. "A note on optimal consumption and investment in a geometric Ornstein–Uhlenbeck market," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 269-280, August.
    11. Bo, Lijun & Tang, Dan & Wang, Yongjin, 2017. "Optimal investment of variance-swaps in jump-diffusion market with regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 175-197.
    12. Shuenn-Jyi Sheu & Li-Hsien Sun & Zheng Zhang, 2018. "Portfolio Optimization with Delay Factor Models," Papers 1805.01118, arXiv.org.
    13. Belkacem Berdjane & Serguei Pergamenshchikov, 2013. "Optimal consumption and investment for markets with random coefficients," Finance and Stochastics, Springer, vol. 17(2), pages 419-446, April.
    14. Marco Piccirilli & Tiziano Vargiolu, 2018. "Optimal Portfolio in Intraday Electricity Markets Modelled by L\'evy-Ornstein-Uhlenbeck Processes," Papers 1807.01979, arXiv.org.
    15. Wanyang Dai, 2014. "Mean-variance hedging based on an incomplete market with external risk factors of non-Gaussian OU processes," Papers 1410.0991, arXiv.org, revised Aug 2015.
    16. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    17. Harin, Alexander, 2018. "Forbidden zones for the expectation. New mathematical results for behavioral and social sciences," MPRA Paper 86650, University Library of Munich, Germany.
    18. Yalc{c}in Aktar & Erik Taflin, 2014. "A remark on smooth solutions to a stochastic control problem with a power terminal cost function and stochastic volatilities," Papers 1405.3566, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    2. Lancelot F. James, 2005. "Analysis of a Class of Likelihood Based Continuous Time Stochastic Volatility Models including Ornstein-Uhlenbeck Models in Financial Economics," Papers math/0503055, arXiv.org, revised Aug 2005.
    3. Wanyang Dai, 2014. "Mean-variance hedging based on an incomplete market with external risk factors of non-Gaussian OU processes," Papers 1410.0991, arXiv.org, revised Aug 2015.
    4. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    5. Carl Lindberg, 2008. "The estimation of the Barndorff‐Nielsen and Shephard model from daily data based on measures of trading intensity," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 277-289, July.
    6. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2015. "Robust portfolio choice with derivative trading under stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 142-157.
    7. Kallsen Jan & Muhle-Karbe Johannes, 2011. "Method of moment estimation in time-changed Lévy models," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 169-194, May.
    8. Francesco C. De Vecchi & Elisa Mastrogiacomo & Mattia Turra & Stefania Ugolini, 2021. "Noether theorem in stochastic optimal control problems via contact symmetries," Papers 2102.03172, arXiv.org.
    9. Daeyung Gim & Hyungbin Park, 2021. "A deep learning algorithm for optimal investment strategies," Papers 2101.12387, arXiv.org.
    10. Semere Habtemicael & Indranil SenGupta, 2016. "Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard process driven financial markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-35, December.
    11. Indranil SenGupta & William Nganje & Erik Hanson, 2021. "Refinements of Barndorff-Nielsen and Shephard Model: An Analysis of Crude Oil Price with Machine Learning," Annals of Data Science, Springer, vol. 8(1), pages 39-55, March.
    12. Semere Habtemicael & Indranil Sengupta, 2016. "Pricing Covariance Swaps For Barndorff–Nielsen And Shephard Process Driven Financial Markets," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-32, September.
    13. Francesco C. De Vecchi & Elisa Mastrogiacomo & Mattia Turra & Stefania Ugolini, 2021. "Noether Theorem in Stochastic Optimal Control Problems via Contact Symmetries," Mathematics, MDPI, vol. 9(9), pages 1-34, April.
    14. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    15. Marco Piccirilli & Tiziano Vargiolu, 2018. "Optimal Portfolio in Intraday Electricity Markets Modelled by L\'evy-Ornstein-Uhlenbeck Processes," Papers 1807.01979, arXiv.org.
    16. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0806.2570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.