IDEAS home Printed from https://ideas.repec.org/p/ags/iwmirp/257961.html
   My bibliography  Save this paper

Global environmental flow information for the sustainable development goals

Author

Listed:
  • Sood, Aditya
  • Smakhtin, Vladimir
  • Eriyagama, Nishadi
  • Villholth, Karen G.
  • Liyanage, Nirosha
  • Wada, Y.
  • Ebrahim, Girma
  • Dickens, Chris

Abstract

Environmental flows (EF) are an important component of Goal 6 (the ‘water goal’) of the Sustainable Development Goals (SDGs). Yet, many countries still do not have well-defined criteria on how to define EF. In this study, we bring together the International Water Management Institute’s (IWMI’s) expertise and previous research in this area to develop a new methodology to quantify EF at a global scale. EF are developed for grids (0.1 degree spatial resolution) for different levels of health (defined as environmental management classes [EMCs]) of river sections. Additionally, EF have been separated into surface water and groundwater components, which also helps in developing sustainable groundwater abstraction (SGWA) limits. An online tool has been developed to calculate EF and SGWA in any area of interest.

Suggested Citation

  • Sood, Aditya & Smakhtin, Vladimir & Eriyagama, Nishadi & Villholth, Karen G. & Liyanage, Nirosha & Wada, Y. & Ebrahim, Girma & Dickens, Chris, 2017. "Global environmental flow information for the sustainable development goals," IWMI Reports 257961, International Water Management Institute.
  • Handle: RePEc:ags:iwmirp:257961
    DOI: 10.22004/ag.econ.257961
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/257961/files/H048035.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.257961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Amarasinghe, Upali A. & Sharma, Bharat R. & Aloysius, Noel & Scott, Christopher & Smakhtin, Vladimir & de Fraiture, Charlotte & Sinha, A. K. & Shukla, A. K., 2004. "Spatial variation in water supply and demand across river basins of India," IWMI Research Reports H036620, International Water Management Institute.
    3. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    4. Amarasinghe, Upali A. & Sharma, Bharat R. & Aloysius, Noel & Scott, Christopher A. & Smakhtin, Vladimir U. & de Fraiture, Charlotte, 2004. "Spatial variation in water supply and demand across river basins of India," IWMI Research Reports 52966, International Water Management Institute.
    5. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    6. Smakhtin, Vladimir & Anputhas, Markandu, 2006. "An assessment of environmental flow requirements of Indian river basins," IWMI Research Reports H039610, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. CGIAR Research Program on Water, Land and Ecosystems (WLE)., 2017. "Building resilience through sustainable groundwater use," IWMI Water Policy Briefings 311136, International Water Management Institute.
    2. Simon Meißner, 2021. "The Impact of Metal Mining on Global Water Stress and Regional Carrying Capacities—A GIS-Based Water Impact Assessment," Resources, MDPI, vol. 10(12), pages 1-34, November.
    3. Mark Ace Dela Cruz & Shinichiro Nakamura & Naota Hanasaki & Julien Boulange, 2021. "Integrated Evaluation of Changing Water Resources in an Active Ecotourism Area: The Case of Puerto Princesa City, Palawan, Philippines," Sustainability, MDPI, vol. 13(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    2. Richard Ackermann, 2012. "New Directions for Water Management in Indian Agriculture," Global Journal of Emerging Market Economies, Emerging Markets Forum, vol. 4(2), pages 227-288, May.
    3. M. Dinesh Kumar, 2018. "Proposing a solution to India’s water crisis: ‘paradigm shift’ or pushing outdated concepts?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(1), pages 42-50, January.
    4. Luis Garrote, 2017. "Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2951-2963, August.
    5. Unknown, 2008. "Managing water in the face of growing scarcity, inequity and declining returns: exploring fresh approaches," IWMI Conference Proceedings 138985, International Water Management Institute.
    6. Shah, Zankhana & Kumar, M. Dinesh, 2008. "In the midst of the large dam controversy: objectives and criteria for assessing large water storages in the developing world," Conference Papers h041801, International Water Management Institute.
    7. repec:cup:judgdm:v:12:y:2017:i:3:p:314-327 is not listed on IDEAS
    8. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    9. Kumar, M. Dinesh & Sharma, Bharat R. & Singh, O.P., 2009. "Water saving and yield enhancing micro-irrigation technologies: how far can they contribute to water productivity in Indian agriculture?," Book Chapters,, International Water Management Institute.
    10. Çetin, Oner & Kara, Abdurrahman, 2019. "Assesment of water productivity using different drip irrigation systems for cotton," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    11. Kumar, M. Dinesh & Shah, Zankhana & Mukherjee, Sacchidananda & Mudgerikar, A., 2008. "Water, human development and economic growth: some international perspectives," Conference Papers h041894, International Water Management Institute.
    12. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Fargione, Joseph E. & Hill, Jason D. & Schenk, Peer M., 2021. "Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries," Energy, Elsevier, vol. 215(PA).
    13. M. Dinesh Kumar & R. Maria Saleth, 2018. "Inequality in the Indian Water Sector: Challenges and Policy Options," Indian Journal of Human Development, , vol. 12(2), pages 265-281, August.
    14. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    15. Shah, Zankhana & Kumar, M. Dinesh, 2008. "In the midst of the large dam controversy: objectives, criteria for assessing large water storages in the developing world," Conference Papers h041896, International Water Management Institute.
    16. Kumar, M. Dinesh & Sharma, Bharat R. & Singh, O. P., 2009. "Water saving and yield enhancing micro-irrigation technologies: how far can they contribute to water productivity in Indian agriculture?," IWMI Books, Reports H042044, International Water Management Institute.
    17. Shahzeen Z. Attari & Kelsey Poinsatte-Jones & Kelsey Hinton, 2017. "Perceptions of water systems," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(3), pages 314-327, May.
    18. R. Quentin Grafton, 2017. "Responding to the ‘Wicked Problem’ of Water Insecurity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3023-3041, August.
    19. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Zankhana Shah & M. Kumar, 2008. "In the Midst of the Large Dam Controversy: Objectives, Criteria for Assessing Large Water Storages in the Developing World," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1799-1824, December.
    21. Mukherjee, Sacchidananda & Shah, Zankhana & Kumar, M. Dinesh, 2008. "Large reservoirs: are they the last Oasis for the survival of cities in India?," MPRA Paper 15640, University Library of Munich, Germany.

    More about this item

    Keywords

    Agribusiness; Consumer/Household Economics; Environmental Economics and Policy; International Development;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iwmirp:257961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.