IDEAS home Printed from https://ideas.repec.org/p/aeg/report/2017-07.html
   My bibliography  Save this paper

Route Recommendations to Business Travelers Exploiting Crowd-Sourced Data

Author

Listed:
  • Thomas Collerton

    (Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG), University of Rome La Sapienza, Rome, Italy)

  • Andrea Marrella

    (Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG), University of Rome La Sapienza, Rome, Italy)

  • Massimo Mecella

    (Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG), University of Rome La Sapienza, Rome, Italy)

  • Tiziana Catarci

    (Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG), University of Rome La Sapienza, Rome, Italy)

Abstract

Business travellers are those people who attend work-related meetings and in their few hours of spare time would like to see the best that the host city can offer in terms of cultural activities and sightseeings. In this work we present a complex architecture, consisting of mobile applications and back-end server components, which supports such a type of users in recommending possible routes within their constraints. The three main contributions are (i) a set of machine learning algorithms that can be used to detect a queuing state of a user with a high degree of accuracy, (ii) how to determine user’s positioning, and (iii)how to practically realize a planner providing a reasonably good enough route plan within a handful of seconds. Preliminary tests demonstrate that the single components of the proposed architecture are feasible and provide good results.

Suggested Citation

  • Thomas Collerton & Andrea Marrella & Massimo Mecella & Tiziana Catarci, 2017. "Route Recommendations to Business Travelers Exploiting Crowd-Sourced Data," DIAG Technical Reports 2017-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
  • Handle: RePEc:aeg:report:2017-07
    as

    Download full text from publisher

    File URL: http://wwwold.dis.uniroma1.it/~bibdis/RePEc/aeg/report/2017-07.pdf
    File Function: First version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    2. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    3. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    4. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    5. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    6. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    7. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    8. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    9. Shu Zhang & Jeffrey W. Ohlmann & Barrett W. Thomas, 2018. "Dynamic Orienteering on a Network of Queues," Transportation Science, INFORMS, vol. 52(3), pages 691-706, June.
    10. Zhang, Shu & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2014. "A priori orienteering with time windows and stochastic wait times at customers," European Journal of Operational Research, Elsevier, vol. 239(1), pages 70-79.
    11. Dewil, R. & Vansteenwegen, P. & Cattrysse, D. & Van Oudheusden, D., 2015. "A minimum cost network flow model for the maximum covering and patrol routing problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 27-36.
    12. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    13. Shima Azizi & Özge Aygül & Brenton Faber & Sharon Johnson & Renata Konrad & Andrew C. Trapp, 2023. "Select, route and schedule: optimizing community paramedicine service delivery with mandatory visits and patient prioritization," Health Care Management Science, Springer, vol. 26(4), pages 719-746, December.
    14. Lin, Jun & Qian, Yanjun & Cui, Wentian & Goh, Thong Ngee, 2015. "An effective approach for scheduling coupled activities in development projects," European Journal of Operational Research, Elsevier, vol. 243(1), pages 97-108.
    15. Vansteenwegen, Pieter & Mateo, Manuel, 2014. "An iterated local search algorithm for the single-vehicle cyclic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 237(3), pages 802-813.
    16. Yu, Bin & Shan, Wenxuan & Sheu, Jiuh-Biing & Diabat, Ali, 2022. "Branch-and-price for a combined order selection and distribution problem in online community group-buying of perishable products," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 341-373.
    17. Drexl, Michael, 2013. "A note on the separation of subtour elimination constraints in elementary shortest path problems," European Journal of Operational Research, Elsevier, vol. 229(3), pages 595-598.
    18. Michael D. Moskal & Erdi Dasdemir & Rajan Batta, 2023. "Unmanned Aerial Vehicle Information Collection Missions with Uncertain Characteristics," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 120-137, January.
    19. Ahn, Jaemyung & de Weck, Olivier & Geng, Yue & Klabjan, Diego, 2012. "Column generation based heuristics for a generalized location routing problem with profits arising in space exploration," European Journal of Operational Research, Elsevier, vol. 223(1), pages 47-59.
    20. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).

    More about this item

    Keywords

    planning ; crowd-sourced data ; cultural heritage ; smart tourism;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aeg:report:2017-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antonietta Angelica Zucconi (email available below). General contact details of provider: https://edirc.repec.org/data/dirosit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.