IDEAS home Printed from https://ideas.repec.org/p/aah/create/2018-28.html
   My bibliography  Save this paper

Edgeworth expansion for Euler approximation of continuous diffusion processes

Author

Listed:
  • Mark Podolskij

    (Aarhus University, Department of Mathematics and CREATES)

  • Bezirgen Veliyev

    (Aarhus University and CREATES)

  • Nakahiro Yoshida

    (University of Tokyo)

Abstract

In this paper we present the Edgeworth expansion for the Euler approximation scheme of a continuous diffusion process driven by a Brownian motion. Our methodology is based upon a recent work [22], which establishes Edgeworth expansions associated with asymptotic mixed normality using elements of Malliavin calculus. Potential applications of our theoretical results include higher order expansions for weak and strong approximation errors associated to the Euler scheme, and for studentized version of the error process.

Suggested Citation

  • Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2018. "Edgeworth expansion for Euler approximation of continuous diffusion processes," CREATES Research Papers 2018-28, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2018-28
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/18/rp18_28.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, K. S. & Stramer, O., 1998. "Weak consistency of the Euler method for numerically solving stochastic differential equations with discontinuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 33-44, August.
    2. Yuri Kabanov & Robert Liptser, 2006. "From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift," Post-Print hal-00488295, HAL.
    3. Remigijus Mikulevicius & Eckhard Platen, 1991. "Rate of Convergence of the Euler Approximation for Diffusion Processes," Published Paper Series 1991-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    4. Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017. "Edgeworth expansion for the pre-averaging estimator," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
    5. Nikolaos Halidias & P. E. Kloeden, 2006. "A note on strong solutions of stochastic differential equations with a discontinuous drift coefficient," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-6, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisa Alòs & Masaaki Fukasawa, 2021. "The asymptotic expansion of the regular discretization error of Itô integrals," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 323-365, January.
    2. Ciprian A. Tudor & Nakahiro Yoshida, 2020. "Asymptotic expansion of the quadratic variation of a mixed fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 435-463, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    2. Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
    3. Vetter, Mathias, 2010. "Limit theorems for bipower variation of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 22-38, January.
    4. Mikulevicius, Remigijus & Zhang, Changyong, 2011. "On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1720-1748, August.
    5. Przybyłowicz, Paweł & Szölgyenyi, Michaela, 2021. "Existence, uniqueness, and approximation of solutions of jump-diffusion SDEs with discontinuous drift," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    6. Mackevičius, Vigirdas, 1997. "Convergence rate of Euler scheme for stochastic differential equations: Functionals of solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 44(2), pages 109-121.
    7. Yamagishi, Hayate & Yoshida, Nakahiro, 2023. "Order estimate of functionals related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 490-543.
    8. Yao Tung Huang & Qingshuo Song & Harry Zheng, 2015. "Weak Convergence of Path-Dependent SDEs in Basket CDS Pricing with Contagion Risk," Papers 1506.00082, arXiv.org, revised May 2016.
    9. Taguchi, Dai & Tanaka, Akihiro, 2020. "Probability density function of SDEs with unbounded and path-dependent drift coefficient," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5243-5289.
    10. Lingohr, Daniel & Müller, Gernot, 2019. "Stochastic modeling of intraday photovoltaic power generation," Energy Economics, Elsevier, vol. 81(C), pages 175-186.
    11. Nikolaus Hautsch & Mark Podolskij, 2013. "Preaveraging-Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 165-183, April.
    12. Vladimir Vovk & Glenn Shafer, 2017. "Towards a probability-free theory of continuous martingales," Papers 1703.08715, arXiv.org.
    13. De Angelis, Tiziano & Germain, Maximilien & Issoglio, Elena, 2022. "A numerical scheme for stochastic differential equations with distributional drift," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 55-90.
    14. Hiderah Kamal, 2020. "Approximation of Euler–Maruyama for one-dimensional stochastic differential equations involving the maximum process," Monte Carlo Methods and Applications, De Gruyter, vol. 26(1), pages 33-47, March.
    15. Mark Podolskij & Mathieu Rosenbaum, 2012. "Testing the local volatility assumption: a statistical approach," Annals of Finance, Springer, vol. 8(1), pages 31-48, February.
    16. Yoshida, Nakahiro, 2023. "Asymptotic expansion and estimates of Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 176-248.
    17. Heiny, Johannes & Podolskij, Mark, 2021. "On estimation of quadratic variation for multivariate pure jump semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 234-254.
    18. Aleš Černý & Jan Kallsen, 2008. "Mean–Variance Hedging And Optimal Investment In Heston'S Model With Correlation," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 473-492, July.
    19. Mark Podolskij & Nakahiro Yoshida, 2013. "Edgeworth expansion for functionals of continuous diffusion processes," CREATES Research Papers 2013-33, Department of Economics and Business Economics, Aarhus University.
    20. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.

    More about this item

    Keywords

    diffusion processes; Edgeworth expansion; Euler scheme; limit theorems;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2018-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.