Advanced Search
MyIDEAS: Login to save this article or follow this journal

Power variation for Gaussian processes with stationary increments

Contents:

Author Info

  • Barndorff-Nielsen, Ole E.
  • Corcuera, José Manuel
  • Podolskij, Mark

Abstract

We develop the asymptotic theory for the realised power variation of the processes X=[phi]-G, where G is a Gaussian process with stationary increments. More specifically, under some mild assumptions on the variance function of the increments of G and certain regularity conditions on the path of the process [phi] we prove the convergence in probability for the properly normalised realised power variation. Moreover, under a further assumption on the Hölder index of the path of [phi], we show an associated stable central limit theorem. The main tool is a general central limit theorem, due essentially to Hu and Nualart [Y. Hu, D. Nualart, Renormalized self-intersection local time for fractional Brownian motion, Ann. Probab. (33) (2005) 948-983], Nualart and Peccati [D. Nualart, G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab. (33) (2005) 177-193] and Peccati and Tudor [G. Peccati, C.A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals, in: M. Emery, M. Ledoux, M. Yor (Eds.), Seminaire de Probabilites XXXVIII, in: Lecture Notes in Math, vol. 1857, Springer-Verlag, Berlin, 2005, pp. 247-262], for sequences of random variables which admit a chaos representation.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V1B-4TFW9FP-1/2/923ab3a6013658b70189d2f853887580
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Stochastic Processes and their Applications.

Volume (Year): 119 (2009)
Issue (Month): 6 (June)
Pages: 1845-1865

as in new window
Handle: RePEc:eee:spapps:v:119:y:2009:i:6:p:1845-1865

Contact details of provider:
Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description

Order Information:
Postal: http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/OOC/InitController?id=505572&ref=505572_01_ooc_1&version=01

Related research

Keywords: Central limit theorem Chaos expansion Gaussian processes High-frequency data Multiple Wiener-Ito integrals Power variation;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
  2. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
  3. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
  4. León, José & Ludeña, Carenne, 2007. "Limits for weighted p-variations and likewise functionals of fractional diffusions with drift," Stochastic Processes and their Applications, Elsevier, vol. 117(3), pages 271-296, March.
  5. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1/2003), pages 47-68, January.
  6. Barndorff-Nielsen, Ole E. & Shephard, Neil & Winkel, Matthias, 2006. "Limit theorems for multipower variation in the presence of jumps," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 796-806, May.
  7. Kinnebrock, Silja & Podolskij, Mark, 2008. "A note on the central limit theorem for bipower variation of general functions," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1056-1070, June.
  8. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
  9. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
  10. Nualart, D. & Ortiz-Latorre, S., 2008. "Central limit theorems for multiple stochastic integrals and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 614-628, April.
  11. Gabriel Lang & François Roueff, 2001. "Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates," Statistical Inference for Stochastic Processes, Springer, vol. 4(3), pages 283-306, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Corcuera, José Manuel & Hedevang, Emil & Pakkanen, Mikko S. & Podolskij, Mark, 2013. "Asymptotic theory for Brownian semi-stationary processes with application to turbulence," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2552-2574.
  2. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, School of Economics and Management, University of Aarhus.
  3. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
  4. Ivan Nourdin & Giovanni Peccati & Mark Podolskij, 2010. "Quantitative Breuer-Major Theorems," CREATES Research Papers 2010-22, School of Economics and Management, University of Aarhus.
  5. Pakkanen, Mikko S., 2014. "Limit theorems for power variations of ambit fields driven by white noise," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1942-1973.
  6. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Limit theorems for functionals of higher order differences of Brownian semi-stationary processes," CREATES Research Papers 2009-60, School of Economics and Management, University of Aarhus.
  7. Liu, Guangying & Zhang, Xinsheng, 2011. "Power variation of fractional integral processes with jumps," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 962-972, August.
  8. Mark Podolskij & Katrin Wasmuth, 2012. "Goodness-of-fit testing for fractional diffusions," CREATES Research Papers 2012-12, School of Economics and Management, University of Aarhus.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:6:p:1845-1865. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.