IDEAS home Printed from https://ideas.repec.org/f/pna470.html
   My authors  Follow this author

Muhammad Nadeem

Not to be confused with: Muhammad Nadeem

Personal Details

First Name:Muhammad
Middle Name:
Last Name:Nadeem
Suffix:
RePEc Short-ID:pna470

Affiliation

(50%) Dr Hasan Murad School of Management
University of Management and Technology (UMT)

Lahore, Pakistan
https://hsm.umt.edu.pk/
RePEc:edi:sbumtpk (more details at EDIRC)

(50%) Department of Economics
Lahore University of Management Sciences

Lahore, Pakistan
http://lums.edu.pk/shssl/economics/
RePEc:edi:delumpk (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Anwar, Farooq & Rashid, Umer & Ashraf, Muhammad & Nadeem, Muhammad, 2010. "Okra (Hibiscus esculentus) seed oil for biodiesel production," Applied Energy, Elsevier, vol. 87(3), pages 779-785, March.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Anwar, Farooq & Rashid, Umer & Ashraf, Muhammad & Nadeem, Muhammad, 2010. "Okra (Hibiscus esculentus) seed oil for biodiesel production," Applied Energy, Elsevier, vol. 87(3), pages 779-785, March.

    Cited by:

    1. Rashid, Umer & Rehman, Hafiz Abdul & Hussain, Irshad & Ibrahim, Muhammad & Haider, Muhammad Sajjad, 2011. "Muskmelon (Cucumis melo) seed oil: A potential non-food oil source for biodiesel production," Energy, Elsevier, vol. 36(9), pages 5632-5639.
    2. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    3. Shenjun Qin & Yuzhuang Sun & Changlin Shi & Leqin He & Yuan Meng & Xiaohui Ren, 2012. "Deacidification of Pistacia chinensis Oil as a Promising Non-Edible Feedstock for Biodiesel Production in China," Energies, MDPI, vol. 5(8), pages 1-12, July.
    4. Aksoy, Laçine, 2011. "Opium poppy (Papaver somniferum L.) oil for preparation of biodiesel: Optimization of conditions," Applied Energy, Elsevier, vol. 88(12), pages 4713-4718.
    5. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    6. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.
    7. Moosavi, Seyed Amir & Aghaalikhani, Majid & Ghobadian, Barat & Fayyazi, Ebrahim, 2018. "Okra: A potential future bioenergy crop in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 517-524.
    8. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Li, Qin & Yan, Yunjun, 2010. "Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase," Applied Energy, Elsevier, vol. 87(10), pages 3148-3154, October.
    10. Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
    11. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    12. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    13. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    14. Chakraborty, M. & Baruah, D.C., 2013. "Production and characterization of biodiesel obtained from Sapindus mukorossi kernel oil," Energy, Elsevier, vol. 60(C), pages 159-167.
    15. Cao, Leichang & Zhang, Shicheng, 2015. "Production and characterization of biodiesel derived from Hodgsonia macrocarpa seed oil," Applied Energy, Elsevier, vol. 146(C), pages 135-140.
    16. Lian, Shuang & Li, Huijuan & Tang, Jinqiang & Tong, Dongmei & Hu, Changwei, 2012. "Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel," Applied Energy, Elsevier, vol. 98(C), pages 540-547.
    17. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    18. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    19. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    20. Rozina, & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nasir & Lu, Houfang, 2017. "Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach," Energy, Elsevier, vol. 141(C), pages 1810-1818.
    21. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    22. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
    23. Munazza Jabeen & Mamoona Munir & Muhammad Mujtaba Abbas & Mushtaq Ahmad & Amir Waseem & Muhammad Saeed & Md Abul Kalam & Muhammad Zafar & Shazia Sultana & Abdullah Mohamed & Bisha Chaudhry, 2022. "Sustainable Production of Biodiesel from Novel and Non-Edible Ailanthus altissima (Mill.) Seed Oil from Green and Recyclable Potassium Hydroxide Activated Ailanthus Cake and Cadmium Sulfide Catalyst," Sustainability, MDPI, vol. 14(17), pages 1-12, September.
    24. Tang, Ying & Meng, Mei & Zhang, Jie & Lu, Yong, 2011. "Efficient preparation of biodiesel from rapeseed oil over modified CaO," Applied Energy, Elsevier, vol. 88(8), pages 2735-2739, August.
    25. Mirnezami, Seyed Abolfazl & Zahedi, Alireza & Shayan Nejad, Ardeshir, 2020. "Thermal optimization of a novel solar/hydro/biomass hybrid renewable system for production of low-cost, high-yield, and environmental-friendly biodiesel," Energy, Elsevier, vol. 202(C).
    26. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    27. Wu, Xuan & Leung, Dennis Y.C., 2011. "Optimization of biodiesel production from camelina oil using orthogonal experiment," Applied Energy, Elsevier, vol. 88(11), pages 3615-3624.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Muhammad Nadeem should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.