IDEAS home Printed from https://ideas.repec.org/a/zib/zbnbda/v2y2020i1p23-28.html
   My bibliography  Save this article

Drip Lateral Placement Response On Wetting Pattern And Water Availability In Raised Bed

Author

Listed:
  • Muhammad Irfan

    (Program Management Unit, Faisalabad Division, Agriculture Department, Punjab, Pakistan)

  • Hassan Raza

    (Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan)

  • Muhammad Mohsin Waqas

    (Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan)

  • Shanawar Hamid

    (Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan)

  • Yasir Niaz

    (Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan)

Abstract

Adoption of high efficiency irrigation system for water management is the key component to ensure the food security in the world. The research was carried out at the experimental area of Water Management Research Center (WMRC) located at Post-Graduate Agricultural Research Station (PARS), University of Agriculture, Faisalabad. The drip irrigation system was installed on an area of about 5 hectares to evaluate uniformity of water application and wetting pattern of 60cm wide bed through three different treatments (T-1, T-II and T-III) Surface, Channel and Subsurface placement of drip laterals. Soil moisture content was recorded at start, middle and end of 67m long bed. Results shows that placement of drip in the channel gave better response of moisture content distribution than that the buried one and when placed openly on the bed. All three drip pipe placements (T1, T2, T3) differ significantly for location, positions, depths and their different interaction within the variables reported. Although, it was tried to put lateral in the center but analysis indicate that it was significant in case of open placed drip pipe whereas it was non-significant in the case of buried pipes or placed in channel. It is also important to mention that pipe placed in the channel was easy to handle, replace and to fold back than the buried one.

Suggested Citation

  • Muhammad Irfan & Hassan Raza & Muhammad Mohsin Waqas & Shanawar Hamid & Yasir Niaz, 2020. "Drip Lateral Placement Response On Wetting Pattern And Water Availability In Raised Bed," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 23-28, June.
  • Handle: RePEc:zib:zbnbda:v:2:y:2020:i:1:p:23-28
    DOI: 10.26480/bda.01.2020.23.28
    as

    Download full text from publisher

    File URL: https://bigdatainagriculture.com/download/937/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/bda.01.2020.23.28?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patel, Neelam & Rajput, T.B.S., 2007. "Effect of drip tape placement depth and irrigation level on yield of potato," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 209-223, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zhenjiang & Plauborg, Finn & Parsons, David & Andersen, Mathias Neumann, 2018. "Potato canopy growth, yield and soil water dynamics under different irrigation systems," Agricultural Water Management, Elsevier, vol. 202(C), pages 9-18.
    2. Mo, Yan & Li, Guangyong & Wang, Dan, 2017. "A sowing method for subsurface drip irrigation that increases the emergence rate, yield, and water use efficiency in spring corn," Agricultural Water Management, Elsevier, vol. 179(C), pages 288-295.
    3. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Cai, Yaohui & Wu, Pute & Gao, Xiaodong & Zhu, Delan & Zhang, Lin & Dai, Zhiguang & Chau, Henry Wai & Zhao, Xining, 2022. "Subsurface irrigation with ceramic emitters: Evaluating soil water effects under multiple precipitation scenarios," Agricultural Water Management, Elsevier, vol. 272(C).
    5. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    6. Wang, Ruoshui & Wan, Shuqin & Kang, Yaohu & Dou, Chaoyin, 2014. "Assessment of secondary soil salinity prevention and economic benefit under different drip line placement and irrigation regime in northwest China," Agricultural Water Management, Elsevier, vol. 131(C), pages 41-49.
    7. Harby MOSTAFA & Hans-Heinrich THÖRMANN, 2013. "On-farm evaluation of low-pressure drip irrigation system for smallholders," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 8(2), pages 87-95.
    8. Jin Guo & Lijian Zheng & Juanjuan Ma & Xufeng Li & Ruixia Chen, 2023. "Meta-Analysis of the Effect of Subsurface Irrigation on Crop Yield and Water Productivity," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    9. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    10. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    11. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    12. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    13. Pal, Sumit & Patel, Neelam & Malik, Anushree & Sharma, Amrit & Pal, Upma & K.G., Rosin & Singh, D.K., 2023. "Eco-friendly treatment of wastewater and its impact on soil and vegetables using flood and micro-irrigation," Agricultural Water Management, Elsevier, vol. 275(C).
    14. Bozkurt, Sefer & Mansuroglu, Gulsum Sayilikan, 2018. "Responses of unheated greenhouse grown green bean to buried drip tape placement depth and watering levels," Agricultural Water Management, Elsevier, vol. 197(C), pages 1-8.
    15. Starr, G.C. & Rowland, D. & Griffin, T.S. & Olanya, O.M., 2008. "Soil water in relation to irrigation, water uptake and potato yield in a humid climate," Agricultural Water Management, Elsevier, vol. 95(3), pages 292-300, March.
    16. Reyes-Cabrera, Joel & Zotarelli, Lincoln & Dukes, Michael D. & Rowland, Diane L. & Sargent, Steven A., 2016. "Soil moisture distribution under drip irrigation and seepage for potato production," Agricultural Water Management, Elsevier, vol. 169(C), pages 183-192.
    17. Ferreira, T.C. & Goncalves, D.A., 2007. "Crop-yield/water-use production functions of potatoes (Solanum tuberosum, L.) grown under differential nitrogen and irrigation treatments in a hot, dry climate," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 45-55, May.
    18. Ning, Songrui & Zhou, Beibei & Shi, Jianchu & Wang, Quanjiu, 2021. "Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern Xinjiang," Agricultural Water Management, Elsevier, vol. 245(C).
    19. Badr, M.A. & El-Tohamy, W.A. & Zaghloul, A.M., 2012. "Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 110(C), pages 9-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnbda:v:2:y:2020:i:1:p:23-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://bigdatainagriculture.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.