IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v31y2021i2p146-160id1562.html
   My bibliography  Save this article

Defining a storage-assignment strategy for precedence-constrained order picking

Author

Listed:
  • Maria A. M. Trindade
  • Paulo S. A. Sousa
  • Maria R. A. Moreira

Abstract

A zero-one quadratic assignment model has been proposed for dealing with the storage location assignment problem when there are weight constraints. Our analysis shows that operations can be improved using our model. When comparing the strategy currently used in a real-life company with the designed model, we found that the new placement of products allowed a reduction of up to 22% on the picking distance. This saving is higher than that achieved with the creation of density zones, a procedure commonly used to deal with weight constraints, according to the literature.

Suggested Citation

  • Maria A. M. Trindade & Paulo S. A. Sousa & Maria R. A. Moreira, 2021. "Defining a storage-assignment strategy for precedence-constrained order picking," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 146-160.
  • Handle: RePEc:wut:journl:v:31:y:2021:i:2:p:146-160:id:1562
    DOI: 10.37190/ord210207
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/1562%20-%20published.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord210207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nita Shah & Monika Naik, 2019. "Coordinated production, ordering, shipment and pricing model for supplier-retailer inventory system under trade credit," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(2), pages 55-76.
    2. Sema Akin Bas & Beyza Ahlatcioglu Ozkok, 2020. "A fuzzy approach to multi-objective mixed integer linear programming model for multi-echelon closed-loop supply chain with multi-product multi-time-period," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(1), pages 25-46.
    3. Brynzer, H. & Johansson, M. I., 1996. "Storage location assignment: Using the product structure to reduce order picking times," International Journal of Production Economics, Elsevier, vol. 46(1), pages 595-603, December.
    4. Grosse, E. H. & Glock, C. H. & Ballester-Ripoll, R., 2014. "A simulated annealing approach for the joint order batching and order picker routing problem with weight restrictions," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65331, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Witold Kosiński & Rafał Muniak & Witold Konrad Kosiński, 2013. "A model for optimizing enterprise’s inventory costs. A fuzzy approach," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 23(4), pages 39-54.
    6. Thomas Chabot & Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2017. "Order picking problems under weight, fragility and category constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6361-6379, November.
    7. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    8. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    9. Zulj, I. & Glock, C. H. & Grosse, E. H. & Schneider, Michael, 2018. "Picker routing and storage-assignment strategies for precedence-constrained order picking," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 105391, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Glock, C. H. & Grosse, E. H., 2012. "Storage policies and order picking strategies in U-shaped order-picking systems with a movable base," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57442, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria A. M. Trindade & Paulo S. A. Sousa & Maria R. A. Moreira, 2022. "Ramping up a heuristic procedure for storage location assignment problem with precedence constraints," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 646-669, September.
    2. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    3. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    4. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    5. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    6. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    7. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    8. Christoph H. Glock & Eric H. Grosse & Ralf M. Elbert & Torsten Franzke, 2017. "Maverick picking: the impact of modifications in work schedules on manual order picking processes," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6344-6360, November.
    9. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    10. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    11. Zhong, Shuya & Giannikas, Vaggelis & Merino, Jorge & McFarlane, Duncan & Cheng, Jun & Shao, Wei, 2022. "Evaluating the benefits of picking and packing planning integration in e-commerce warehouses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 67-81.
    12. Anderson Rogério Faia Pinto & Marcelo Seido Nagano, 2020. "Genetic algorithms applied to integration and optimization of billing and picking processes," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 641-659, March.
    13. Kovács, András, 2011. "Optimizing the storage assignment in a warehouse served by milkrun logistics," International Journal of Production Economics, Elsevier, vol. 133(1), pages 312-318, September.
    14. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    15. Dobromir Herzog, 2021. "Human factor aspects in information security management in the traditional IT and cloud computing models," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 93-108.
    16. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    17. Rafael Diaz, 2016. "Using dynamic demand information and zoning for the storage of non-uniform density stock keeping units," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2487-2498, April.
    18. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    19. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    20. K. L. Choy & G. T. S. Ho & C. K. H. Lee, 2017. "A RFID-based storage assignment system for enhancing the efficiency of order picking," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 111-129, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:31:y:2021:i:2:p:146-160:id:1562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.