IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v20y2017i05ns0219024917500352.html
   My bibliography  Save this article

Tighter Bounds For Implied Volatility

Author

Listed:
  • JIM GATHERAL

    (Department of Mathematics, Baruch College, City University of New York, One Bernard Baruch Way, New York 10010, USA)

  • IVAN MATIĆ

    (Department of Mathematics, Baruch College, City University of New York, One Bernard Baruch Way, New York 10010, USA)

  • RADOŠ RADOIČIĆ

    (Department of Mathematics, Baruch College, City University of New York, One Bernard Baruch Way, New York 10010, USA)

  • DAN STEFANICA

    (Department of Mathematics, Baruch College, City University of New York, One Bernard Baruch Way, New York 10010, USA)

Abstract

We establish bounds on Black–Scholes implied volatility that improve on the uniform bounds previously derived by Tehranchi. Our upper bound is uniform, while the lower bound holds for most options likely to be encountered in practical applications. We further demonstrate the practical effectiveness of our new bounds by showing how the efficiency of the bisection algorithm is improved for a snapshot of SPX option quotes.

Suggested Citation

  • Jim Gatheral & Ivan Matić & Radoš Radoičić & Dan Stefanica, 2017. "Tighter Bounds For Implied Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-14, August.
  • Handle: RePEc:wsi:ijtafx:v:20:y:2017:i:05:n:s0219024917500352
    DOI: 10.1142/S0219024917500352
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024917500352
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024917500352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corrado, Charles J. & Miller, Thomas Jr., 1996. "A note on a simple, accurate formula to compute implied standard deviations," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 595-603, April.
    2. Hallerbach, W.G.P.M., 2004. "An Improved Estimator For Black-Scholes-Merton Implied Volatility," ERIM Report Series Research in Management ERS-2004-054-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Dan Stefanica & Radoš Radoičić, 2017. "An Explicit Implied Volatility Formula," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-32, November.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Michael R. Tehranchi, 2015. "Uniform bounds for Black--Scholes implied volatility," Papers 1512.06812, arXiv.org, revised Aug 2016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Matić & Radoš Radoičić & Dan Stefanica, 2017. "Pólya-based approximation for the ATM-forward implied volatility," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-15, June.
    2. Yuxuan Xia & Zhenyu Cui, 2018. "An exact and explicit implied volatility inversion formula," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-29, September.
    3. Olesya Grishchenko & Xiao Han & Victor Nistor, 2018. "A volatility-of-volatility expansion of the option prices in the SABR stochastic volatility model," Papers 1812.09904, arXiv.org.
    4. Dan Stefanica & Radoš Radoičić, 2017. "An Explicit Implied Volatility Formula," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Stefanica & Radoš Radoičić, 2017. "An Explicit Implied Volatility Formula," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-32, November.
    2. Yibing Chen & Cheng-Few Lee & John Lee & Jow-Ran Chang, 2018. "Alternative Methods to Estimate Implied Variance: Review and Comparison," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-28, December.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Yalincak, Orhun Hakan, 2005. "Criticism of the Black-Scholes Model: But Why Is It Still Used? (The Answer Is Simpler than the Formula)," MPRA Paper 63208, University Library of Munich, Germany.
    5. Dan Stefanica & Radoš Radoičić, 2016. "A sharp approximation for ATM-forward option prices and implied volatilites," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-24, March.
    6. Butler, J. S. & Schachter, Barry, 1996. "The statistical properties of parameters inferred from the black-scholes formula," International Review of Financial Analysis, Elsevier, vol. 5(3), pages 223-235.
    7. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2022. "A Black–Scholes user's guide to the Bachelier model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 959-980, May.
    8. Minqiang Li & Kyuseok Lee, 2011. "An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
    9. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    10. Sukhomlin, Nikolay & Santana Jiménez, Lisette Josefina, 2010. "Problema de calibración de mercado y estructura implícita del modelo de bonos de Black-Cox = Market Calibration Problem and the Implied Structure of the Black-Cox Bond Model," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 10(1), pages 73-98, December.
    11. Steven Li, 2003. "The estimation of implied volatility from the Black-Scholes model: some new formulas and their applications," School of Economics and Finance Discussion Papers and Working Papers Series 141, School of Economics and Finance, Queensland University of Technology.
    12. Kazuhiko NISHINA & Tatsuro Nabil MAGHREBI & Moo-Sung KIM, 2006. "Stock Market Volatility And The Forecasting Accuracy Of Implied Volatility Indices," Discussion Papers in Economics and Business 06-09, Osaka University, Graduate School of Economics.
    13. Jingwei Liu & Xing Chen, 2012. "Implied volatility formula of European Power Option Pricing," Papers 1203.0599, arXiv.org.
    14. Michele Mininni & Giuseppe Orlando & Giovanni Taglialatela, 2021. "Challenges in approximating the Black and Scholes call formula with hyperbolic tangents," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 73-100, June.
    15. Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    16. Matthias Fengler, 2010. "Option data and modeling BSM implied volatility," University of St. Gallen Department of Economics working paper series 2010 2010-32, Department of Economics, University of St. Gallen.
    17. Yixiao Lu & Yihong Wang & Tinggan Yang, 2021. "Adaptive Gradient Descent Methods for Computing Implied Volatility," Papers 2108.07035, arXiv.org, revised Mar 2023.
    18. Olesya Grishchenko & Xiao Han & Victor Nistor, 2018. "A volatility-of-volatility expansion of the option prices in the SABR stochastic volatility model," Papers 1812.09904, arXiv.org.
    19. Ivan Damnjanovic & Xue Zhou, 2009. "Impact of crude oil market behaviour on unit bid prices: the evidence from the highway construction sector," Construction Management and Economics, Taylor & Francis Journals, vol. 27(9), pages 881-890.
    20. Yuxuan Xia & Zhenyu Cui, 2018. "An exact and explicit implied volatility inversion formula," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:20:y:2017:i:05:n:s0219024917500352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.