IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v16y2017i06ns0219622015500388.html
   My bibliography  Save this article

Solving Dynamic Multi-Criteria Resource-Target Allocation Problem Under Uncertainty: A Comparison of Decomposition and Myopic Approaches

Author

Listed:
  • Anissa Frini

    (Unité Départementale des Sciences de gestion, Université du Québec à Rimouski, Campus de Lévis, 1595 Blvd Alphonse Desjardins, Lévis, Quebec, Canada G6V 0A6, Canada)

  • Adel Guitouni

    (Peter B. Gustavson School of Business, University of Victoria, P.O. Box 1700, Victoria, Canada BC V8W 2Y2, Canada)

  • Abderrezak Benaskeur

    (Defence R&D Canada – Valcartier, 2459 Route de la Bravoure, Québec, Quebec, Canada G3J 1X5, Canada)

Abstract

This paper is concerned with multi-criteria and dynamic resource allocation problem in a naval engagement context. The scenario under investigation considers air threats directed towards a ship that has to plan its engagement by efficiently allocating the available weapons against the threats to maximize its survivability. This dynamic and multi-criteria decision-making problem is modeled using a multi-criteria decision tree and solved with two approaches: the multi-criteria decomposition approach and the multi-criteria myopic approach. We propose a novel metric for comparing two strategies within a multi-criteria decision tree and have developed a testbed in order to simulate the engagements. The results show that, when sufficient decomposition conditions are verified, the decomposition approach produces superior decision-making strategies compared to the myopic approach. Conversely, when the multi-criteria decision aid (MCDA) method does not satisfy the decomposition conditions (e.g., TOPSIS), there is no guarantee that decomposition will provide the best compromise strategies. From a military perspective, this work will help develop tactics, procedures and training packages for such a highly complex and dynamic decision-making problem. The plans generated by the approach presented here can also serve as a reference for assessment of the quality of the engagement plans yielded by real-time planning algorithms.

Suggested Citation

  • Anissa Frini & Adel Guitouni & Abderrezak Benaskeur, 2017. "Solving Dynamic Multi-Criteria Resource-Target Allocation Problem Under Uncertainty: A Comparison of Decomposition and Myopic Approaches," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(06), pages 1465-1496, November.
  • Handle: RePEc:wsi:ijitdm:v:16:y:2017:i:06:n:s0219622015500388
    DOI: 10.1142/S0219622015500388
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622015500388
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622015500388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cha, Young-Ho & Kim, Yeong-Dae, 2010. "Fire scheduling for planned artillery attack operations under time-dependent destruction probabilities," Omega, Elsevier, vol. 38(5), pages 383-392, October.
    2. Richard H. Day, 1966. "Allocating Weapons to Target Complexes by Means of Nonlinear Programming," Operations Research, INFORMS, vol. 14(6), pages 992-1013, December.
    3. F. Lemus & K. H. David, 1963. "An Optimum Allocation of Different Weapons to a Target Complex," Operations Research, INFORMS, vol. 11(5), pages 787-794, October.
    4. Zvi Covaliu & Robert M. Oliver, 1995. "Representation and Solution of Decision Problems Using Sequential Decision Diagrams," Management Science, INFORMS, vol. 41(12), pages 1860-1881, December.
    5. Ravindra K. Ahuja & Arvind Kumar & Krishna C. Jha & James B. Orlin, 2007. "Exact and Heuristic Algorithms for the Weapon-Target Assignment Problem," Operations Research, INFORMS, vol. 55(6), pages 1136-1146, December.
    6. Eitan Wacholder, 1989. "A Neural Network-Based Optimization Algorithm for the Static Weapon-Target Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 1(4), pages 232-246, November.
    7. Frini, Anissa & Guitouni, Adel & Martel, Jean-Marc, 2012. "A general decomposition approach for multi-criteria decision trees," European Journal of Operational Research, Elsevier, vol. 220(2), pages 452-460.
    8. Alan S. Manne, 1958. "A Target-Assignment Problem," Operations Research, INFORMS, vol. 6(3), pages 346-351, June.
    9. E Erdem & N E Ozdemirel, 2003. "An evolutionary approach for the target allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(9), pages 958-969, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    2. Alexander G. Kline & Darryl K. Ahner & Brian J. Lunday, 2019. "Real-time heuristic algorithms for the static weapon target assignment problem," Journal of Heuristics, Springer, vol. 25(3), pages 377-397, June.
    3. Ojeong Kwon & Donghan Kang & Kyungsik Lee & Sungsoo Park, 1999. "Lagrangian relaxation approach to the targeting problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(6), pages 640-653, September.
    4. Lu, Yiping & Chen, Danny Z., 2021. "A new exact algorithm for the Weapon-Target Assignment problem," Omega, Elsevier, vol. 98(C).
    5. Alexandre Colaers Andersen & Konstantin Pavlikov & Túlio A. M. Toffolo, 2022. "Weapon-target assignment problem: exact and approximate solution algorithms," Annals of Operations Research, Springer, vol. 312(2), pages 581-606, May.
    6. Davis, Michael T. & Robbins, Matthew J. & Lunday, Brian J., 2017. "Approximate dynamic programming for missile defense interceptor fire control," European Journal of Operational Research, Elsevier, vol. 259(3), pages 873-886.
    7. Ravindra K. Ahuja & Arvind Kumar & Krishna C. Jha & James B. Orlin, 2007. "Exact and Heuristic Algorithms for the Weapon-Target Assignment Problem," Operations Research, INFORMS, vol. 55(6), pages 1136-1146, December.
    8. Alexander G. Kline & Darryl K. Ahner & Brian J. Lunday, 2020. "A heuristic and metaheuristic approach to the static weapon target assignment problem," Journal of Global Optimization, Springer, vol. 78(4), pages 791-812, December.
    9. Gülpınar, Nalan & Çanakoğlu, Ethem & Branke, Juergen, 2018. "Heuristics for the stochastic dynamic task-resource allocation problem with retry opportunities," European Journal of Operational Research, Elsevier, vol. 266(1), pages 291-303.
    10. Ahmet Silav & Orhan Karasakal & Esra Karasakal, 2019. "Bi‐objective missile rescheduling for a naval task group with dynamic disruptions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 596-615, October.
    11. Juan Li & Bin Xin & Panos M. Pardalos & Jie Chen, 2021. "Solving bi-objective uncertain stochastic resource allocation problems by the CVaR-based risk measure and decomposition-based multi-objective evolutionary algorithms," Annals of Operations Research, Springer, vol. 296(1), pages 639-666, January.
    12. Hughes, Michael S. & Lunday, Brian J., 2022. "The Weapon Target Assignment Problem: Rational Inference of Adversary Target Utility Valuations from Observed Solutions," Omega, Elsevier, vol. 107(C).
    13. Cha, Young-Ho & Kim, Yeong-Dae, 2010. "Fire scheduling for planned artillery attack operations under time-dependent destruction probabilities," Omega, Elsevier, vol. 38(5), pages 383-392, October.
    14. Ahmet Silav & Esra Karasakal & Orhan Karasakal, 2022. "Bi-objective dynamic weapon-target assignment problem with stability measure," Annals of Operations Research, Springer, vol. 311(2), pages 1229-1247, April.
    15. Orhan Karasakal & Nur Evin Özdemirel & Levent Kandiller, 2011. "Anti‐ship missile defense for a naval task group," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 304-321, April.
    16. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    17. Chikalov, Igor & Hussain, Shahid & Moshkov, Mikhail, 2018. "Bi-criteria optimization of decision trees with applications to data analysis," European Journal of Operational Research, Elsevier, vol. 266(2), pages 689-701.
    18. Prakash Shenoy, 1998. "Game Trees For Decision Analysis," Theory and Decision, Springer, vol. 44(2), pages 149-171, April.
    19. Lopez-Diaz, Miguel & Rodriguez-Muniz, Luis J., 2007. "Influence diagrams with super value nodes involving imprecise information," European Journal of Operational Research, Elsevier, vol. 179(1), pages 203-219, May.
    20. C. L. Smith & E. Borgonovo, 2007. "Decision Making During Nuclear Power Plant Incidents—A New Approach to the Evaluation of Precursor Events," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1027-1042, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:16:y:2017:i:06:n:s0219622015500388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.