IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v19y2016i3p207-221.html
   My bibliography  Save this article

Measuring Flexibility, Descriptive Complexity, and Rework Potential in Generic System Architectures

Author

Listed:
  • David A. Broniatowski
  • Joel Moses

Abstract

A system's architecture defines its flexibility—the ease with which changes to the system's structure may be made. Systems may possess an internal structure that is relatively complex to describe—especially after many changes. In addition, some changes may require several iterations before stakeholders converge on a final design choice. There is currently no unified mathematical theory that captures these factors. We developed metrics for flexibility, descriptive complexity, and rework potential defined on graph‐based representations of a system's structure. We applied these metrics to four idealized generic system architectures: Tree‐structured hierarchies are easy to describe and require minimal design iteration. However, they permit relatively few changes, unless the underlying architecture itself is changed. Furthermore, each such change adds significant complexity. Grid networks are more flexible than trees, but also more descriptively complex. Grids also require some degree of design iteration between stakeholders. Teams are extremely flexible but the requirement for consensus (e.g., due to cognitive limits among humans) restricts their size. Layered hierarchies possess moderate flexibility and require fewer iterations than corresponding grids and teams, although they can be difficult to describe succinctly. Our findings suggest that no architecture is ideal under all circumstances; rather, each has strengths and weaknesses that can be exploited in different environments.

Suggested Citation

  • David A. Broniatowski & Joel Moses, 2016. "Measuring Flexibility, Descriptive Complexity, and Rework Potential in Generic System Architectures," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 207-221, May.
  • Handle: RePEc:wly:syseng:v:19:y:2016:i:3:p:207-221
    DOI: 10.1002/sys.21351
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21351
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erin T. Ryan & David R. Jacques & John M. Colombi, 2013. "An ontological framework for clarifying flexibility‐related terminology via literature survey," Systems Engineering, John Wiley & Sons, vol. 16(1), pages 99-110, March.
    2. Herbert A. Simon, 1996. "The Sciences of the Artificial, 3rd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691914, December.
    3. Jason E. Bartolomei & Daniel E. Hastings & Richard de Neufville & Donna H. Rhodes, 2012. "Engineering Systems Multiple‐Domain Matrix: An organizing framework for modeling large‐scale complex systems," Systems Engineering, John Wiley & Sons, vol. 15(1), pages 41-61, March.
    4. Clark, Kim B., 1985. "The interaction of design hierarchies and market concepts in technological evolution," Research Policy, Elsevier, vol. 14(5), pages 235-251, October.
    5. Alan MacCormack & John Rusnak & Carliss Y. Baldwin, 2006. "Exploring the Structure of Complex Software Designs: An Empirical Study of Open Source and Proprietary Code," Management Science, INFORMS, vol. 52(7), pages 1015-1030, July.
    6. Adam M. Ross & Donna H. Rhodes & Daniel E. Hastings, 2008. "Defining changeability: Reconciling flexibility, adaptability, scalability, modifiability, and robustness for maintaining system lifecycle value," Systems Engineering, John Wiley & Sons, vol. 11(3), pages 246-262, September.
    7. Baldwin, Carliss & MacCormack, Alan & Rusnak, John, 2014. "Hidden structure: Using network methods to map system architecture," Research Policy, Elsevier, vol. 43(8), pages 1381-1397.
    8. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    9. Ulrich, Karl, 1995. "The role of product architecture in the manufacturing firm," Research Policy, Elsevier, vol. 24(3), pages 419-440, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amodeo, Domenico C. & Francis, Royce A., 2019. "The role of protocol layers and macro-cognitive functions in engineered system resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    2. Germán Herrera Vidal & Jairo R. Coronado-Hernández & Claudia Minnaard, 2023. "Measuring manufacturing system complexity: a literature review," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2865-2888, October.
    3. David A. Broniatowski, 2017. "Flexibility Due to Abstraction and Decomposition," Systems Engineering, John Wiley & Sons, vol. 20(2), pages 98-117, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baldwin, Carliss & MacCormack, Alan & Rusnak, John, 2014. "Hidden structure: Using network methods to map system architecture," Research Policy, Elsevier, vol. 43(8), pages 1381-1397.
    2. Mohsen Jafari Songhori & Javad Nasiry, 2020. "Organizational Structure, Subsystem Interaction Pattern, and Misalignments in Complex NPD Projects," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 214-231, January.
    3. Manuel E. Sosa & Jürgen Mihm & Tyson R. Browning, 2013. "Linking Cyclicality and Product Quality," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 473-491, July.
    4. David A. Broniatowski, 2018. "Building the tower without climbing it: Progress in engineering systems," Systems Engineering, John Wiley & Sons, vol. 21(3), pages 259-281, May.
    5. Sungyong Um & Bin Zhang & Sunil Wattal & Youngjin Yoo, 2023. "Software Components and Product Variety in a Platform Ecosystem: A Dynamic Network Analysis of WordPress," Information Systems Research, INFORMS, vol. 34(4), pages 1339-1374, December.
    6. Simge Tuna & Stefano Brusoni & Anja Schulze, 2019. "Architectural knowledge generation: evidence from a field study," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 28(5), pages 977-1009.
    7. Mohsen Jafari Songhori & Madjid Tavana & Takao Terano, 2020. "Product development team formation: effects of organizational- and product-related factors," Computational and Mathematical Organization Theory, Springer, vol. 26(1), pages 88-122, March.
    8. Navya Pandit & Constantin Prox & Carliss Y. Baldwin, 2022. "Studying modular design: an interview with Carliss Y. Baldwin," Journal of Organization Design, Springer;Organizational Design Community, vol. 11(2), pages 77-85, June.
    9. Bleda, Mercedes & Querbes, Adrien & Healey, Mark, 2021. "The influence of motivational factors on ongoing product design decisions," Journal of Business Research, Elsevier, vol. 129(C), pages 562-569.
    10. David A. Broniatowski, 2017. "Flexibility Due to Abstraction and Decomposition," Systems Engineering, John Wiley & Sons, vol. 20(2), pages 98-117, March.
    11. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    12. Loris Gaio, 2005. "A diversity-based approach to requirements tracing in new product development," ROCK Working Papers 031, Department of Computer and Management Sciences, University of Trento, Italy, revised 13 Jun 2008.
    13. Funk, Jeffery, 2009. "Components, systems and discontinuities: The case of magnetic recording and playback equipment," Research Policy, Elsevier, vol. 38(7), pages 1192-1202, September.
    14. Murmann, Johann Peter & Frenken, Koen, 2006. "Toward a systematic framework for research on dominant designs, technological innovations, and industrial change," Research Policy, Elsevier, vol. 35(7), pages 925-952, September.
    15. Fixson, Sebastian K. & Park, Jin-Kyu, 2008. "The power of integrality: Linkages between product architecture, innovation, and industry structure," Research Policy, Elsevier, vol. 37(8), pages 1296-1316, September.
    16. MacCormack, Alan & Baldwin, Carliss & Rusnak, John, 2012. "Exploring the duality between product and organizational architectures: A test of the “mirroring” hypothesis," Research Policy, Elsevier, vol. 41(8), pages 1309-1324.
    17. Gawer, Annabelle, 2014. "Bridging differing perspectives on technological platforms: Toward an integrative framework," Research Policy, Elsevier, vol. 43(7), pages 1239-1249.
    18. Sylvain Lenfle & Sihem Ben Mahmoud-Jouini & Caroline Derousseaux, 2007. "New Product development in a platform-driven organization : Towards platform lifecycle management," Post-Print hal-00263329, HAL.
    19. Oliver Baumann & Nicolaj Siggelkow, 2013. "Dealing with Complexity: Integrated vs. Chunky Search Processes," Organization Science, INFORMS, vol. 24(1), pages 116-132, February.
    20. Nicholas Burton & Peter Galvin, 2020. "Component complementarity and transaction costs: the evolution of product design," Review of Managerial Science, Springer, vol. 14(4), pages 845-867, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:19:y:2016:i:3:p:207-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.