IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v18y2015i1p102-113.html
   My bibliography  Save this article

Space‐Based Infrared Sensor Scheduling with High Uncertainty: Issues and Challenges

Author

Listed:
  • Kaiping Luo

Abstract

The space‐based infrared system (SBIRS) is the most advanced missile‐defense system. However, available infrared sensors in the system are scarce, and their tracking abilities are still very limited. To improve the integrated power, SBIRS needs an approach to scheduling online infrared staring sensors. This paper focuses on the new problem and its characteristics. Compared with other similar problems, the proposed problem has scarce resources, sudden missions, an uncertain environment and complex constraints, so it shows many unique characteristics, such as strong real‐time, high uncertainty and extreme complexity. This causes that the routine formulation of other similar problems may be unsuitable for the new problem. Hence, we have to face many challenges in modeling, solving and simulating for the proposed problem. Finally, the idea of our solution is presented. Simulation results confirm the effectiveness of our solution.

Suggested Citation

  • Kaiping Luo, 2015. "Space‐Based Infrared Sensor Scheduling with High Uncertainty: Issues and Challenges," Systems Engineering, John Wiley & Sons, vol. 18(1), pages 102-113, January.
  • Handle: RePEc:wly:syseng:v:18:y:2015:i:1:p:102-113
    DOI: 10.1002/sys.21295
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21295
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    2. William J. Wolfe & Stephen E. Sorensen, 2000. "Three Scheduling Algorithms Applied to the Earth Observing Systems Domain," Management Science, INFORMS, vol. 46(1), pages 148-166, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahalec, Vladimir & Chen, Yingwu & Liu, Xiaolu & He, Renjie & Sun, Kai, 2015. "Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolutionAuthor-Name: Chen, Yingguo," European Journal of Operational Research, Elsevier, vol. 242(1), pages 10-20.
    2. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    3. Zigao Wu & Shaohua Yu & Tiancheng Li, 2019. "A Meta-Model-Based Multi-Objective Evolutionary Approach to Robust Job Shop Scheduling," Mathematics, MDPI, vol. 7(6), pages 1-19, June.
    4. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    5. Huilong Fan & Zhan Yang & Shimin Wu & Xi Zhang & Jun Long & Limin Liu, 2021. "An Efficient Satellite Resource Cooperative Scheduling Method on Spatial Information Networks," Mathematics, MDPI, vol. 9(24), pages 1-23, December.
    6. Devansh Jalota & Dario Paccagnan & Maximilian Schiffer & Marco Pavone, 2023. "Online Routing Over Parallel Networks: Deterministic Limits and Data-driven Enhancements," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 560-577, May.
    7. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.
    8. Giuseppe Lancia & Franca Rinaldi & Paolo Serafini, 2011. "A time-indexed LP-based approach for min-sum job-shop problems," Annals of Operations Research, Springer, vol. 186(1), pages 175-198, June.
    9. Daniel Reich & Yuhui Shi & Marina Epelman & Amy Cohn & Ellen Barnes & Kirk Arthurs & Erica Klampfl, 2016. "Scheduling Crash Tests at Ford Motor Company," Interfaces, INFORMS, vol. 46(5), pages 409-423, October.
    10. S.S. Panwalkar & Christos Koulamas, 2015. "Scheduling research and the first decade of NRLQ: A historical perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 335-344, June.
    11. Dušan Knop & Martin Koutecký, 2018. "Scheduling meets n-fold integer programming," Journal of Scheduling, Springer, vol. 21(5), pages 493-503, October.
    12. Zhang Ye & Hu Xiaoxuan & Zhu Waiming & Jin Peng, 2018. "Solving the Observing and Downloading Integrated Scheduling Problem of Earth Observation Satellite with a Quantum Genetic Algorithm," Journal of Systems Science and Information, De Gruyter, vol. 6(5), pages 399-420, October.
    13. J-F Cordeau & G Laporte, 2005. "Maximizing the value of an Earth observation satellite orbit," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 962-968, August.
    14. Chen, Xiaoyu & Reinelt, Gerhard & Dai, Guangming & Spitz, Andreas, 2019. "A mixed integer linear programming model for multi-satellite scheduling," European Journal of Operational Research, Elsevier, vol. 275(2), pages 694-707.
    15. F. Hwang & M. Kovalyov & B. Lin, 2014. "Scheduling for fabrication and assembly in a two-machine flowshop with a fixed job sequence," Annals of Operations Research, Springer, vol. 217(1), pages 263-279, June.
    16. Türsel Eliiyi, Deniz & Azizoglu, Meral, 2011. "Heuristics for operational fixed job scheduling problems with working and spread time constraints," International Journal of Production Economics, Elsevier, vol. 132(1), pages 107-121, July.
    17. R J Ormerod, 2010. "OR as rational choice: a decision and game theory perspective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(12), pages 1761-1776, December.
    18. Jianping Li & Runtao Xie & Junran Lichen & Guojun Hu & Pengxiang Pan & Ping Yang, 2023. "Exact algorithms for solving the constrained parallel-machine scheduling problems with divisible processing times and penalties," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-19, May.
    19. Benavides, Alexander J. & Ritt, Marcus & Miralles, Cristóbal, 2014. "Flow shop scheduling with heterogeneous workers," European Journal of Operational Research, Elsevier, vol. 237(2), pages 713-720.
    20. Tzu-Li Chen & Chen-Yang Cheng & Yi-Han Chou, 2020. "Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming," Annals of Operations Research, Springer, vol. 290(1), pages 813-836, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:18:y:2015:i:1:p:102-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.