IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v51y2004i4p557-574.html
   My bibliography  Save this article

Higher‐order Markov chain models for categorical data sequences

Author

Listed:
  • Wai Ki Ching
  • Eric S. Fung
  • Michael K. Ng

Abstract

In this paper we study higher‐order Markov chain models for analyzing categorical data sequences. We propose an efficient estimation method for the model parameters. Data sequences such as DNA and sales demand are used to illustrate the predicting power of our proposed models. In particular, we apply the developed higher‐order Markov chain model to the server logs data. The objective here is to model the users' behavior in accessing information and to predict their behavior in the future. Our tests are based on a realistic web log and our model shows an improvement in prediction. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004

Suggested Citation

  • Wai Ki Ching & Eric S. Fung & Michael K. Ng, 2004. "Higher‐order Markov chain models for categorical data sequences," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 557-574, June.
  • Handle: RePEc:wly:navres:v:51:y:2004:i:4:p:557-574
    DOI: 10.1002/nav.20017
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20017
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adrian Raftery & Simon Tavaré, 1994. "Estimation and Modelling Repeated Patterns in High Order Markov Chains with the Mixture Transition Distribution Model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 179-199, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suryadeepto Nag & Sankarshan Basu & Siddhartha P. Chakrabarty, 2022. "Modeling the Commodity Prices of Base Metals in Indian Commodity Market Using a Higher Order Markovian Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 159-171, March.
    2. Anton E. Kulagin & Alexander V. Shapovalov, 2023. "Analytical Description of the Diffusion in a Cellular Automaton with the Margolus Neighbourhood in Terms of the Two-Dimensional Markov Chain," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    3. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    4. Chenfeng Xiong & Di Yang & Lei Zhang, 2018. "A High-Order Hidden Markov Model and Its Applications for Dynamic Car Ownership Analysis," Service Science, INFORMS, vol. 52(6), pages 1365-1375, December.
    5. Flavio Ivo Riedlinger & João Nicolau, 2020. "The Profitability in the FTSE 100 Index: A New Markov Chain Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 61-81, March.
    6. Tie Liu, 2010. "Application of Markov Chains to Analyze and Predict the Time Series," Modern Applied Science, Canadian Center of Science and Education, vol. 4(5), pages 162-162, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Ioannis Kontoyiannis & Lambros Mertzanis & Athina Panotopoulou & Ioannis Papageorgiou & Maria Skoularidou, 2022. "Bayesian context trees: Modelling and exact inference for discrete time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1287-1323, September.
    3. Francesco Bartolucci & Alessio Farcomeni, 2010. "A note on the mixture transition distribution and hidden Markov models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 132-138, March.
    4. Riccardo De Blasis & Giovanni Batista Masala & Filippo Petroni, 2021. "A Multivariate High-Order Markov Model for the Income Estimation of a Wind Farm," Energies, MDPI, vol. 14(2), pages 1-16, January.
    5. Arapis, Anastasios N. & Makri, Frosso S. & Psillakis, Zaharias M., 2016. "On the length and the position of the minimum sequence containing all runs of ones in a Markovian binary sequence," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 45-54.
    6. Kharin, Yuriy & Voloshko, Valeriy, 2021. "Robust estimation for Binomial conditionally nonlinear autoregressive time series based on multivariate conditional frequencies," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    7. Nikolaos Stavropoulos & Alexandra Papadopoulou & Pavlos Kolias, 2021. "Evaluating the Efficiency of Off-Ball Screens in Elite Basketball Teams via Second-Order Markov Modelling," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    8. James, Marilyn, 1999. "Towards an integrated needs and outcome framework," Health Policy, Elsevier, vol. 46(3), pages 165-177, March.
    9. Bruno Damásio & João Nicolau, 2020. "Time Inhomogeneous Multivariate Markov Chains: Detecting and Testing Multiple Structural Breaks Occurring at Unknown," Working Papers REM 2020/0136, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    10. P.-C. G. Vassiliou & T. P. Moysiadis, 2010. "$\boldsymbol{\mathcal{G}-}$ Inhomogeneous Markov Systems of High Order," Methodology and Computing in Applied Probability, Springer, vol. 12(2), pages 271-292, June.
    11. Jonsson, Robert, 2011. "A Markov Chain Model for Analysing the Progression of Patient’s Health States," Research Reports 2011:6, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    12. Li, Li & Yan, Xihong & Zhang, Xinzhen, 2022. "An SDP relaxation method for perron pairs of a nonnegative tensor," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    13. Ankinakatte, Smitha & Edwards, David, 2015. "Modelling discrete longitudinal data using acyclic probabilistic finite automata," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 40-52.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:51:y:2004:i:4:p:557-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.