IDEAS home Printed from https://ideas.repec.org/p/hhs/gunsru/2011_006.html
   My bibliography  Save this paper

A Markov Chain Model for Analysing the Progression of Patient’s Health States

Author

Listed:
  • Jonsson, Robert

    (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)

Abstract

Markov chains (MCs) have been used to study how the health states of patients are progressing in time. With few exceptions the studies have been based on the questionable assumptions that the MC has order m=1 and is homogeneous in time. In this paper a three-state non-homogeneous MC model is introduced that allows m to vary. It is demonstrated how wrong assumptions about homogeneity and about the value of m can invalidate predictions of future health states. This can in turn seriously bias a cost-benefit analysis when costs are attached to the predicted outcomes. The present paper only considers problems connected with model construction and estimation. Problems of testing for a proper value of m and of homogeneity is treated in a subsequent paper. Data of work resumption among sick-listed women and men are used to illustrate the theory. A nonhomogeneous MC with m = 2 was well fitted to data for both sexes. The essential difference between the rehabilitation processes for the two sexes was that men had a higher chance to move from the intermediate health state to the state ‘healthy’, while women tended to remain in the intermediate state for a longer time.

Suggested Citation

  • Jonsson, Robert, 2011. "A Markov Chain Model for Analysing the Progression of Patient’s Health States," Research Reports 2011:6, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
  • Handle: RePEc:hhs:gunsru:2011_006
    as

    Download full text from publisher

    File URL: http://gupea.ub.gu.se/handle/2077/27932
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonsson, Robert, 2011. "Tests of Markov Order and Homogeneity in a Markov Chain," Research Reports 2011:7, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    2. Sally McClean & Peter Millard, 1998. "A three compartment model of the patient flows in a geriatric department: a decision support approach," Health Care Management Science, Springer, vol. 1(2), pages 159-163, October.
    3. P. J. Avery & D. A. Henderson, 1999. "Fitting Markov chain models to discrete state series such as DNA sequences," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(1), pages 53-61.
    4. Adrian Raftery & Simon Tavaré, 1994. "Estimation and Modelling Repeated Patterns in High Order Markov Chains with the Mixture Transition Distribution Model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 179-199, March.
    5. J. P. Hughes & P Guttorp & S. P. Charles, 1999. "A non‐homogeneous hidden Markov model for precipitation occurrence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(1), pages 15-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonsson, Robert, 2011. "Tests of Markov Order and Homogeneity in a Markov Chain," Research Reports 2011:7, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    2. P.-C. G. Vassiliou, 2020. "Laws of Large Numbers for Non-Homogeneous Markov Systems," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1631-1658, December.
    3. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Jennifer Gillespie & Sally McClean & Bryan Scotney & Lalit Garg & Maria Barton & Ken Fullerton, 2011. "Costing hospital resources for stroke patients using phase-type models," Health Care Management Science, Springer, vol. 14(3), pages 279-291, September.
    5. Spezia, Luigi, 2020. "Bayesian variable selection in non-homogeneous hidden Markov models through an evolutionary Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    6. Ioannis Kontoyiannis & Lambros Mertzanis & Athina Panotopoulou & Ioannis Papageorgiou & Maria Skoularidou, 2022. "Bayesian context trees: Modelling and exact inference for discrete time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1287-1323, September.
    7. Hie Joo Ahn & Bart Hobijn & Ayşegül Şahin, 2023. "The Dual U.S. Labor Market Uncovered," NBER Working Papers 31241, National Bureau of Economic Research, Inc.
    8. Gallego, C. & Pinson, P. & Madsen, H. & Costa, A. & Cuerva, A., 2011. "Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting," Applied Energy, Elsevier, vol. 88(11), pages 4087-4096.
    9. Pierre Ailliot & Craig Thompson & Peter Thomson, 2009. "Space–time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 405-426, July.
    10. Benjamin Avanzi & Greg Taylor & Bernard Wong & Alan Xian, 2020. "Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework," Papers 2003.13888, arXiv.org, revised May 2020.
    11. Wai Ki Ching & Eric S. Fung & Michael K. Ng, 2004. "Higher‐order Markov chain models for categorical data sequences," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 557-574, June.
    12. Anastasios N. Arapis & Frosso S. Makri & Zaharias M. Psillakis, 2017. "Joint distribution of k-tuple statistics in zero-one sequences of Markov-dependent trials," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-13, December.
    13. Guillermo Ferreira & Jorge Mateu & Emilio Porcu, 2018. "Spatio-temporal analysis with short- and long-memory dependence: a state-space approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 221-245, March.
    14. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Xian, Alan, 2021. "Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework," European Journal of Operational Research, Elsevier, vol. 290(1), pages 177-195.
    15. M. Ritter & O. Mußhoff & M. Odening, 2014. "Minimizing Geographical Basis Risk of Weather Derivatives Using A Multi-Site Rainfall Model," Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 67-86, June.
    16. Francesco Bartolucci & Alessio Farcomeni, 2010. "A note on the mixture transition distribution and hidden Markov models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 132-138, March.
    17. Riccardo De Blasis & Giovanni Batista Masala & Filippo Petroni, 2021. "A Multivariate High-Order Markov Model for the Income Estimation of a Wind Farm," Energies, MDPI, vol. 14(2), pages 1-16, January.
    18. Arapis, Anastasios N. & Makri, Frosso S. & Psillakis, Zaharias M., 2016. "On the length and the position of the minimum sequence containing all runs of ones in a Markovian binary sequence," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 45-54.
    19. Kharin, Yuriy & Voloshko, Valeriy, 2021. "Robust estimation for Binomial conditionally nonlinear autoregressive time series based on multivariate conditional frequencies," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    20. Gang Du & Xi Liang & Chuanwang Sun, 2017. "Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows," Sustainability, MDPI, vol. 9(2), pages 1-22, February.

    More about this item

    Keywords

    Rehabilitation; transition probability; prediction; Maximum Likelihood;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunsru:2011_006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Linus Schiöler (email available below). General contact details of provider: http://www.statistics.gu.se/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.