IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v45y1998i4p335-352.html
   My bibliography  Save this article

An optimal structured policy for maintenance of partially observable aircraft engine components

Author

Listed:
  • Wallace J. Hopp
  • Yar‐Lin Kuo

Abstract

This paper considers the maintenance of aircraft engine components that are subject to stress. We model the deterioration process by means of the cumulative jump process representation of crack growth. However, because in many cases cracks are not easily observable, maintenance decisions must be made on the basis of other information. We incorporate stress information collected via sensors into the scheduling decision process by means of a partially observable Markov decision process model. Using this model, we demonstrate the optimality of structured maintenance policies, which support practical maintenance schedules. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 335–352, 1998

Suggested Citation

  • Wallace J. Hopp & Yar‐Lin Kuo, 1998. "An optimal structured policy for maintenance of partially observable aircraft engine components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(4), pages 335-352, June.
  • Handle: RePEc:wly:navres:v:45:y:1998:i:4:p:335-352
    DOI: 10.1002/(SICI)1520-6750(199806)45:43.0.CO;2-6
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199806)45:43.0.CO;2-6
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199806)45:43.0.CO;2-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wallace J. Hopp & Sung‐Chi Wu, 1988. "Multiaction maintenance under markovian deterioration and incomplete state information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 447-462, October.
    2. Donald Rosenfield, 1976. "Markovian Deterioration with Uncertain Information," Operations Research, INFORMS, vol. 24(1), pages 141-155, February.
    3. Donald Rosenfield, 1976. "Markovian Deterioration With Uncertain Information — A More General Model," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 389-405, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yarlin Kuo & Zi‐Ann Chang, 2007. "Integrated production scheduling and preventive maintenance planning for a single machine under a cumulative damage failure process," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 602-614, September.
    2. Daming Lin & Viliam Makis, 2006. "On‐line parameter estimation for a partially observable system subject to random failure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 477-483, August.
    3. Michele Compare & Paolo Marelli & Piero Baraldi & Enrico Zio, 2018. "A Markov decision process framework for optimal operation of monitored multi-state systems," Journal of Risk and Reliability, , vol. 232(6), pages 677-689, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    2. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    3. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    4. Hao Zhang & Weihua Zhang, 2023. "Analytical Solution to a Partially Observable Machine Maintenance Problem with Obvious Failures," Management Science, INFORMS, vol. 69(7), pages 3993-4015, July.
    5. Wallace J. Hopp & Sung‐Chi Wu, 1988. "Multiaction maintenance under markovian deterioration and incomplete state information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 447-462, October.
    6. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    7. Lisa M. Maillart & Ludmila Zheltova, 2007. "Structured maintenance policies on interior sample paths," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 645-655, September.
    8. Ramin Moghaddass & Şeyda Ertekin, 2018. "Joint optimization of ordering and maintenance with condition monitoring data," Annals of Operations Research, Springer, vol. 263(1), pages 271-310, April.
    9. Miehling, Erik & Teneketzis, Demosthenis, 2020. "Monotonicity properties for two-action partially observable Markov decision processes on partially ordered spaces," European Journal of Operational Research, Elsevier, vol. 282(3), pages 936-944.
    10. Armando Z. Milioni & Stanley R. Pliska, 1988. "Optimal inspection under semi‐markovian deterioration: Basic results," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 373-392, October.
    11. Stephen M. Gilbert & Hena M Bar, 1999. "The value of observing the condition of a deteriorating machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 790-808, October.
    12. Kazaz, Burak & Sloan, Thomas W., 2013. "The impact of process deterioration on production and maintenance policies," European Journal of Operational Research, Elsevier, vol. 227(1), pages 88-100.
    13. T Sloan, 2010. "First, do no harm? A framework for evaluating new versus reprocessed medical devices," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 191-201, February.
    14. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    15. Bismut, Elizabeth & Straub, Daniel, 2021. "Optimal adaptive inspection and maintenance planning for deteriorating structural systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Su, Chao-Ton & Wu, Sung-Chi & Chang, Cheng-Chang, 2000. "Multiaction maintenance subject to action-dependent risk and stochastic failure," European Journal of Operational Research, Elsevier, vol. 125(1), pages 133-148, August.
    17. A. Gürhan Kök & Kevin H. Shang, 2007. "Inspection and Replenishment Policies for Systems with Inventory Record Inaccuracy," Manufacturing & Service Operations Management, INFORMS, vol. 9(2), pages 185-205, February.
    18. M. S. Krishnan & Tridas Mukhopadhyay & Charles H. Kriebel, 2004. "A Decision Model for Software Maintenance," Information Systems Research, INFORMS, vol. 15(4), pages 396-412, December.
    19. Michael Jong Kim & Viliam Makis, 2013. "Joint Optimization of Sampling and Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 61(3), pages 777-790, June.
    20. Meller, Russell D. & Kim, David S., 1996. "The impact of preventive maintenance on system cost and buffer size," European Journal of Operational Research, Elsevier, vol. 95(3), pages 577-591, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:45:y:1998:i:4:p:335-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.