IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i3p777-790.html
   My bibliography  Save this article

Joint Optimization of Sampling and Control of Partially Observable Failing Systems

Author

Listed:
  • Michael Jong Kim

    (Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada; and Department of Decision Sciences, NUS Business School, Singapore, Republic of Singapore)

  • Viliam Makis

    (Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada)

Abstract

Stochastic control problems that arise in reliability and maintenance optimization typically assume that information used for decision-making is obtained according to a predetermined sampling schedule. In many real applications, however, there is a high sampling cost associated with collecting such data. It is therefore of equal importance to determine when information should be collected and to decide how this information should be utilized for maintenance decision-making. This type of joint optimization has been a long-standing problem in the operations research and maintenance optimization literature, and very few results regarding the structure of the optimal sampling and maintenance policy have been published. In this paper, we formulate and analyze the joint optimization of sampling and maintenance decision-making in the partially observable Markov decision process framework. We prove the optimality of a policy that is characterized by three critical thresholds, which have practical interpretation and give new insight into the value of condition-based maintenance programs in life-cycle asset management. Illustrative numerical comparisons are provided that show substantial cost savings over existing suboptimal policies.

Suggested Citation

  • Michael Jong Kim & Viliam Makis, 2013. "Joint Optimization of Sampling and Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 61(3), pages 777-790, June.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:777-790
    DOI: 10.1287/opre.2013.1171
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1171
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2013.1171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ali Dogramaci & Nelson M. Fraiman, 2004. "Replacement Decisions with Maintenance Under Uncertainty: An Imbedded Optimal Control Model," Operations Research, INFORMS, vol. 52(5), pages 785-794, October.
    2. Ohnishi, Masamitsu & Kawai, Hajime & Mine, Hisashi, 1986. "An optimal inspection and replacement policy under incomplete state information," European Journal of Operational Research, Elsevier, vol. 27(1), pages 117-128, October.
    3. Suleyman Özekici & Stanley R. Pliska, 1991. "Optimal Scheduling of Inspections: A Delayed Markov Model with False Positives and Negatives," Operations Research, INFORMS, vol. 39(2), pages 261-273, April.
    4. V. Makis & X. Jiang, 2003. "Optimal Replacement Under Partial Observations," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 382-394, May.
    5. Donald Rosenfield, 1976. "Markovian Deterioration with Uncertain Information," Operations Research, INFORMS, vol. 24(1), pages 141-155, February.
    6. Jiang, R., 2010. "Optimization of alarm threshold and sequential inspection scheme," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 208-215.
    7. Robert F. Anderson & Avner Friedman, 1978. "Optimal Inspections in a Stochastic Control Problem with Costly Observations, II," Mathematics of Operations Research, INFORMS, vol. 3(1), pages 67-81, February.
    8. George Tagaras & Yiannis Nikolaidis, 2002. "Comparing the Effectiveness of Various Bayesian X̄ Control Charts," Operations Research, INFORMS, vol. 50(5), pages 878-888, October.
    9. Wang, Ling & Chu, Jian & Mao, Weijie, 2009. "A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure," European Journal of Operational Research, Elsevier, vol. 194(1), pages 184-205, April.
    10. Kim, Michael Jong & Jiang, Rui & Makis, Viliam & Lee, Chi-Guhn, 2011. "Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure," European Journal of Operational Research, Elsevier, vol. 214(2), pages 331-339, October.
    11. William S. Lovejoy, 1987. "Technical Note—On the Convexity of Policy Regions in Partially Observed Systems," Operations Research, INFORMS, vol. 35(4), pages 619-621, August.
    12. Kurt, Murat & Kharoufeh, Jeffrey P., 2010. "Optimally maintaining a Markovian deteriorating system with limited imperfect repairs," European Journal of Operational Research, Elsevier, vol. 205(2), pages 368-380, September.
    13. Makis, Viliam & Wu, Jianmou & Gao, Yan, 2006. "An application of DPCA to oil data for CBM modeling," European Journal of Operational Research, Elsevier, vol. 174(1), pages 112-123, October.
    14. Savaş Dayanik & Ülkü Gürler, 2002. "An Adaptive Bayesian Replacement Policy with Minimal Repair," Operations Research, INFORMS, vol. 50(3), pages 552-558, June.
    15. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    16. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    17. Dieulle, L. & Berenguer, C. & Grall, A. & Roussignol, M., 2003. "Sequential condition-based maintenance scheduling for a deteriorating system," European Journal of Operational Research, Elsevier, vol. 150(2), pages 451-461, October.
    18. Giovanni Parmigiani, 1996. "Optimal Scheduling of Fallible Inspections," Operations Research, INFORMS, vol. 44(2), pages 360-367, April.
    19. Kuo, Yarlin, 2006. "Optimal adaptive control policy for joint machine maintenance and product quality control," European Journal of Operational Research, Elsevier, vol. 171(2), pages 586-597, June.
    20. Bernd Heidergott & Taoying Farenhorst-Yuan, 2010. "Gradient Estimation for Multicomponent Maintenance Systems with Age-Replacement Policy," Operations Research, INFORMS, vol. 58(3), pages 706-718, June.
    21. Sheldon M. Ross, 1971. "Quality Control under Markovian Deterioration," Management Science, INFORMS, vol. 17(9), pages 587-596, May.
    22. Juang, Muh-Guey & Anderson, Gary, 2004. "A Bayesian method on adaptive preventive maintenance problem," European Journal of Operational Research, Elsevier, vol. 155(2), pages 455-473, June.
    23. Viliam Makis, 2008. "Multivariate Bayesian Control Chart," Operations Research, INFORMS, vol. 56(2), pages 487-496, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.
    2. Xiao, Xiao & Jiang, Wei & Luo, Jianwen, 2019. "Combining process and product information for quality improvement," International Journal of Production Economics, Elsevier, vol. 207(C), pages 130-143.
    3. Lam, Ji Ye Janet & Banjevic, Dragan, 2015. "A myopic policy for optimal inspection scheduling for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 1-11.
    4. Akram Khaleghei & Viliam Makis, 2015. "Model parameter estimation and residual life prediction for a partially observable failing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(3), pages 190-205, April.
    5. Duan, Chaoqun & Makis, Viliam & Deng, Chao, 2020. "A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Jue Wang, 2016. "Minimizing the false alarm rate in systems with transient abnormality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 320-334, June.
    8. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    9. Zheng, Rui & Xing, Yuan & Ren, Xiangyun, 2023. "Multilevel preventive replacement for a system subject to internal deterioration, external shocks, and dynamic missions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Michiel A. J. uit het Broek & Ruud H. Teunter & Bram de Jonge & Jasper Veldman & Nicky D. Van Foreest, 2020. "Condition-Based Production Planning: Adjusting Production Rates to Balance Output and Failure Risk," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 792-811, July.
    11. Naderkhani, Farnoosh & Makis, Viliam, 2016. "Economic design of multivariate Bayesian control chart with two sampling intervals," International Journal of Production Economics, Elsevier, vol. 174(C), pages 29-42.
    12. Akcay, Alp, 2022. "An alert-assisted inspection policy for a production process with imperfect condition signals," European Journal of Operational Research, Elsevier, vol. 298(2), pages 510-525.
    13. van Staden, Heletjé E. & Deprez, Laurens & Boute, Robert N., 2022. "A dynamic “predict, then optimize” preventive maintenance approach using operational intervention data," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1079-1096.
    14. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    15. C. Drent & S. Kapodistria & J. A. C. Resing, 2019. "Condition-based maintenance policies under imperfect maintenance at scheduled and unscheduled opportunities," Queueing Systems: Theory and Applications, Springer, vol. 93(3), pages 269-308, December.
    16. Michael Jong Kim, 2020. "Variance Regularization in Sequential Bayesian Optimization," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 966-992, August.
    17. Ramin Moghaddass & Şeyda Ertekin, 2018. "Joint optimization of ordering and maintenance with condition monitoring data," Annals of Operations Research, Springer, vol. 263(1), pages 271-310, April.
    18. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    19. van Staden, Heletjé E. & Boute, Robert N., 2021. "The effect of multi-sensor data on condition-based maintenance policies," European Journal of Operational Research, Elsevier, vol. 290(2), pages 585-600.
    20. Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    21. Abderrahmane Abbou & Viliam Makis, 2019. "Group Maintenance: A Restless Bandits Approach," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 719-731, October.
    22. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    23. Michael Jong Kim, 2016. "Robust Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 64(4), pages 999-1014, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhang & Weihua Zhang, 2023. "Analytical Solution to a Partially Observable Machine Maintenance Problem with Obvious Failures," Management Science, INFORMS, vol. 69(7), pages 3993-4015, July.
    2. Jue Wang & Chi-Guhn Lee, 2015. "Multistate Bayesian Control Chart Over a Finite Horizon," Operations Research, INFORMS, vol. 63(4), pages 949-964, August.
    3. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    4. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    5. Kim, Michael Jong & Jiang, Rui & Makis, Viliam & Lee, Chi-Guhn, 2011. "Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure," European Journal of Operational Research, Elsevier, vol. 214(2), pages 331-339, October.
    6. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Makis, Viliam, 2009. "Multivariate Bayesian process control for a finite production run," European Journal of Operational Research, Elsevier, vol. 194(3), pages 795-806, May.
    8. Tang, Diyin & Makis, Viliam & Jafari, Leila & Yu, Jinsong, 2015. "Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 198-207.
    9. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    10. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    11. Jue Wang, 2016. "Minimizing the false alarm rate in systems with transient abnormality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 320-334, June.
    12. Saghafian, Soroush, 2018. "Ambiguous partially observable Markov decision processes: Structural results and applications," Journal of Economic Theory, Elsevier, vol. 178(C), pages 1-35.
    13. Michael Jong Kim, 2016. "Robust Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 64(4), pages 999-1014, August.
    14. Lisa M. Maillart & Ludmila Zheltova, 2007. "Structured maintenance policies on interior sample paths," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 645-655, September.
    15. Insua, David Rios & Ruggeri, Fabrizio & Soyer, Refik & Wilson, Simon, 2020. "Advances in Bayesian decision making in reliability," European Journal of Operational Research, Elsevier, vol. 282(1), pages 1-18.
    16. Rui Jiang & Michael Kim & Viliam Makis, 2012. "A Bayesian model and numerical algorithm for CBM availability maximization," Annals of Operations Research, Springer, vol. 196(1), pages 333-348, July.
    17. L M Maillart & T G Yeung & Z Gozde Icten, 2011. "Selecting test sensitivity and specificity parameters to optimally maintain a degrading system," Journal of Risk and Reliability, , vol. 225(2), pages 131-139, June.
    18. Akram Khaleghei & Viliam Makis, 2015. "Model parameter estimation and residual life prediction for a partially observable failing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(3), pages 190-205, April.
    19. Viliam Makis, 2008. "Multivariate Bayesian Control Chart," Operations Research, INFORMS, vol. 56(2), pages 487-496, April.
    20. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:777-790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.