IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v19y2012i2p128-149.html
   My bibliography  Save this article

Pricing And Hedging Short Sterling Options Using Neural Networks

Author

Listed:
  • Fei Chen
  • Charles Sutcliffe

Abstract

This paper compares the performance of artificial neural networks (ANNs) with that of the modified Black model in both pricing and hedging short sterling options. Using high‐frequency data, standard and hybrid ANNs are trained to generate option prices. The hybrid ANN is significantly superior to both the modified Black model and the standard ANN in pricing call and put options. Hedge ratios for hedging short sterling options positions using short sterling futures are produced using the standard and hybrid ANN pricing models, the modified Black model, and also standard and hybrid ANNs trained directly on the hedge ratios. The performance of hedge ratios from ANNs directly trained on actual hedge ratios is significantly superior to those based on a pricing model, and to the modified Black model. Copyright © 2012 John Wiley & Sons, Ltd.

Suggested Citation

  • Fei Chen & Charles Sutcliffe, 2012. "Pricing And Hedging Short Sterling Options Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 128-149, April.
  • Handle: RePEc:wly:isacfm:v:19:y:2012:i:2:p:128-149
    DOI: 10.1002/isaf.336
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.336
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    2. Ren‐Raw Chen & Louis Scott, 1993. "Pricing interest rate futures options with futures‐style margining," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(1), pages 15-22, February.
    3. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
    4. Christopher A. Zapart, 2003. "Beyond Black–Scholes: A Neural Networks-Based Approach to Options Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 469-489.
    5. Chris Charalambous & Spiros Martzoukos, 2005. "Hybrid artificial neural networks for efficient valuation of real options and financial derivatives," Computational Management Science, Springer, vol. 2(2), pages 155-161, March.
    6. A. Carelli & S. Silani & F. Stella, 2000. "Profiling Neural Networks For Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 183-204.
    7. Jun Lu & Hiroshi Ohta, 2003. "A data and digital-contracts driven method for pricing complex derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 212-219.
    8. Yao, Jingtao & Li, Yili & Tan, Chew Lim, 2000. "Option price forecasting using neural networks," Omega, Elsevier, vol. 28(4), pages 455-466, August.
    9. Healy, J.V. & Dixon, M. & Read, B.J. & Cai, F.F., 2004. "Confidence limits for data mining models of options prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 162-167.
    10. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
    11. Derming Lieu, 1990. "Option pricing with futures‐style margining," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 10(4), pages 327-338, August.
    12. David Kelly & Jamsheed Shorish, 1994. "Valuing and Hedging American Put Options Using Neural Networks," GSIA Working Papers 8, Carnegie Mellon University, Tepper School of Business.
    13. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    14. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    15. Montagna, Guido & Morelli, Marco & Nicrosini, Oreste & Amato, Paolo & Farina, Marco, 2003. "Pricing derivatives by path integral and neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 189-195.
    16. Andros Gregoriou & Jerome Healy & Christos Ioannidis, 2007. "Hedging under the influence of transaction costs: An empirical investigation on FTSE 100 index options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(5), pages 471-494, May.
    17. Christopher Zapart, 2002. "Stochastic volatility options pricing with wavelets and artificial neural networks," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 487-495.
    18. J Lu & H Ohta, 2003. "Digital contracts-driven method for pricing complex derivatives," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(9), pages 1002-1010, September.
    19. Morelli, Marco J & Montagna, Guido & Nicrosini, Oreste & Treccani, Michele & Farina, Marco & Amato, Paolo, 2004. "Pricing financial derivatives with neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 160-165.
    20. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    21. Nikola Gradojevic & Ramazan Gencay & Dragan Kukolj, 2009. "Option Pricing with Modular Neural Networks," Working Paper series 32_09, Rimini Centre for Economic Analysis.
    22. Gunter Meissner & Noriko Kawano, 2001. "Capturing the volatility smile of options on high-tech stocks—A combined GARCH-neural network approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 25(3), pages 276-292, September.
    23. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    2. Gkillas, Konstantinos & Konstantatos, Christoforos & Floros, Christos & Tsagkanos, Athanasios, 2021. "Realized volatility spillovers between US spot and futures during ECB news: Evidence from the European sovereign debt crisis," International Review of Financial Analysis, Elsevier, vol. 74(C).
    3. Daniel Doyle & Chris Groendyke, 2018. "Using Neural Networks to Price and Hedge Variable Annuity Guarantees," Risks, MDPI, vol. 7(1), pages 1-19, December.
    4. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    2. Julia Bennell & Charles Sutcliffe, 2004. "Black–Scholes versus artificial neural networks in pricing FTSE 100 options," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 243-260, October.
    3. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    4. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    7. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
    8. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
    9. Raquel M. Gaspar & Sara D. Lopes & Bernardo Sequeira, 2020. "Neural Network Pricing of American Put Options," Risks, MDPI, vol. 8(3), pages 1-24, July.
    10. Anindya Goswami & Sharan Rajani & Atharva Tanksale, 2020. "Data-Driven Option Pricing using Single and Multi-Asset Supervised Learning," Papers 2008.00462, arXiv.org, revised Dec 2020.
    11. Mark T. Leung & An‐Sing Chen & Ruben Mancha, 2009. "Making trading decisions for financial‐engineered derivatives: a novel ensemble of neural networks using information content," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(4), pages 257-277, October.
    12. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
    13. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    14. Radosław Puka & Bartosz Łamasz & Iwona Skalna & Beata Basiura & Jerzy Duda, 2023. "Knowledge Discovery to Support WTI Crude Oil Price Risk Management," Energies, MDPI, vol. 16(8), pages 1-14, April.
    15. Radosław Puka & Bartosz Łamasz, 2020. "Using Artificial Neural Networks to Find Buy Signals for WTI Crude Oil Call Options," Energies, MDPI, vol. 13(17), pages 1-20, August.
    16. Efe Arin & A. Murat Ozbayoglu, 2022. "Deep Learning Based Hybrid Computational Intelligence Models for Options Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 39-58, January.
    17. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    18. João A. Bastos, 2023. "Conformal prediction of option prices," Working Papers REM 2023/0304, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    19. Bodo Herzog & Sufyan Osamah, 2019. "Reverse Engineering of Option Pricing: An AI Application," IJFS, MDPI, vol. 7(4), pages 1-12, November.
    20. George W. Kutner & David C. Porter & John G. Thatcher, 2001. "The Proposed Introduction Of Futures-Style Margining In The United States: An Australian Comparison," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 24(2), pages 239-259, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:19:y:2012:i:2:p:128-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.