IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v29y2024i1p273-310.html
   My bibliography  Save this article

Joint calibration of S&P 500 and VIX options under local stochastic volatility models

Author

Listed:
  • Zhiqiang Zhou
  • Wei Xu
  • Alexey Rubtsov

Abstract

It is extremely challenging to design a model calibrating both SPX and VIX option prices. A long‐standing conjecture due to Julien Guyon is that it may not be possible to calibrate these two quantities with a continuous model. So far, most studied continuous time models are affine, so we investigate the conjecture among 14 well‐known non‐affine local stochastic volatility models in this article. First, we propose a unified efficient willow tree method for S&P500 and VIX option pricing under non‐affine models. Second, we compare the joint calibration performance on these 14 models on the S&P500 and VIX option prices data from 2006 to 2019. We find that the VIX option price data can provide extra information of the variance dynamics of the models, and the non‐affine structure and the volatility with linear, rather than square‐root, diffusion process provide a better fit for the both data sets than the affine counterparts. Among the 14 stochastic models, the SABR model provides the best in‐ and out‐of‐sample performance (in terms of mean square error) regardless of the state of the economy. Nevertheless, even for the best‐fitted SABR model, the relative error on the VIX option is still around 18%, still quite significant. Therefore, we found the non‐affine and local volatility structure improve the joint calibration but are still far from satisfactory.

Suggested Citation

  • Zhiqiang Zhou & Wei Xu & Alexey Rubtsov, 2024. "Joint calibration of S&P 500 and VIX options under local stochastic volatility models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 273-310, January.
  • Handle: RePEc:wly:ijfiec:v:29:y:2024:i:1:p:273-310
    DOI: 10.1002/ijfe.2686
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2686
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    2. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    3. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    4. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    5. Christian Bayer & Jim Gatheral & Morten Karlsmark, 2013. "Fast Ninomiya--Victoir calibration of the double-mean-reverting model," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1813-1829, November.
    6. Duan, Jin-Chuan & Yeh, Chung-Ying, 2010. "Jump and volatility risk premiums implied by VIX," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2232-2244, November.
    7. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    8. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    9. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    10. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    11. Anthonie W. Van Der Stoep & Lech A. Grzelak & Cornelis W. Oosterlee, 2014. "The Heston Stochastic-Local Volatility Model: Efficient Monte Carlo Simulation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-30.
    12. Wei Xu & Zhiwu Hong & Chenxiang Qin, 2013. "A new sampling strategy willow tree method with application to path-dependent option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 861-872, May.
    13. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    14. Fabrizio Ferriani & Sergio Pastorello, 2012. "Estimating and testing non‐affine option pricing models with a large unbalanced panel of options," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 171-203, June.
    15. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    16. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    17. Xingguo Luo & Jin E. Zhang & Wenjun Zhang, 2019. "Instantaneous squared VIX and VIX derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1193-1213, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Julien Guyon, 2020. "Inversion of convex ordering in the VIX market," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1597-1623, October.
    3. Ivan Guo & Gregoire Loeper & Jan Obloj & Shiyi Wang, 2020. "Joint Modelling and Calibration of SPX and VIX by Optimal Transport," Papers 2004.02198, arXiv.org, revised Sep 2021.
    4. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    5. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    6. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    7. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Papers 2212.10917, arXiv.org, revised May 2023.
    8. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    9. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    10. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    11. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    12. Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
    13. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    14. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org.
    15. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Maya Briani & Lucia Caramellino & Antonino Zanette, 2017. "A hybrid approach for the implementation of the Heston model," Post-Print hal-00916440, HAL.
    17. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    18. Yacin Jerbi, 2016. "Early exercise premium method for pricing American options under the J-model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-26, December.
    19. Faller, D. & Petruccione, F., 2003. "A master equation approach to option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 519-534.
    20. Lech A. Grzelak, 2022. "On Randomization of Affine Diffusion Processes with Application to Pricing of Options on VIX and S&P 500," Papers 2208.12518, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:29:y:2024:i:1:p:273-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.