IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v11y2021i4p807-823.html
   My bibliography  Save this article

Heterogeneous catalysts for the hydrogenation of amine/alkali hydroxide solvent captured CO2 to formate: A review

Author

Listed:
  • Lichun Li
  • Xiangcan Chen
  • Zhengfei Chen
  • Ruiqin Gao
  • Hangdi Yu
  • Tian Yuan
  • Zongjian Liu
  • Marcel Maeder

Abstract

Carbon capture and utilization technology is one of the medium‐term technology options to reduce CO2 emissions while producing value‐added fuels and chemical products. The integrated CO2 capture and hydrogenation process is an encouraging replacement to the conventional decoupled CO2 capture and hydrogenation process, which allows direct utilization of captured CO2 thus eliminating the energy‐intensive CO2 desorption and compression steps in the typical carbon capture and storage (CCS) process. The hydrogenation of captured CO2 in amine/alkali hydroxide solvents is the key step to attain the integrated CO2 capture and hydrogenation process. Considering the lack of timely review on the topic of hydrogenation of amine/alkali hydroxide solvent captured CO2 to formate in the presence of heterogeneous catalysts, a summary of such process with different capturing solvents and heterogeneous catalyst were critically summarized and briefly reviewed in the current paper. The main goal of this review is to provide fundamental insights and guidance for the future design of heterogeneous catalysts for the hydrogenation of captured CO2 in amine/alkali metal hydroxide‐based solvents. Future research directions to advance the process of hydrogenation of captured CO2 were also recommended. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Lichun Li & Xiangcan Chen & Zhengfei Chen & Ruiqin Gao & Hangdi Yu & Tian Yuan & Zongjian Liu & Marcel Maeder, 2021. "Heterogeneous catalysts for the hydrogenation of amine/alkali hydroxide solvent captured CO2 to formate: A review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 807-823, August.
  • Handle: RePEc:wly:greenh:v:11:y:2021:i:4:p:807-823
    DOI: 10.1002/ghg.2101
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2101
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    2. Muriel Cozier, 2019. "Recent developments in carbon capture utilisation and storage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(4), pages 613-616, August.
    3. Michael Ashley & Charles Magiera & Punnamchandar Ramidi & Gary Blackburn & Timothy G Scott & Rajeev Gupta & Kerry Wilson & Anindya Ghosh & Abhijit Biswas, 2012. "Nanomaterials and processes for carbon capture and conversion into useful by‐products for a sustainable energy future," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 2(6), pages 419-444, December.
    4. Lichun Li & Wenfeng Han & Hai Yu & Haodong Tang, 2013. "CO 2 absorption by piperazine promoted aqueous ammonia solution: absorption kinetics and ammonia loss," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 3(3), pages 231-245, June.
    5. Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
    6. Michele Aresta, 2019. "Carbon dioxide utilization: The way to the circular economy," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(4), pages 610-612, August.
    7. Niall Mac Dowell & Paul S. Fennell & Nilay Shah & Geoffrey C. Maitland, 2017. "The role of CO2 capture and utilization in mitigating climate change," Nature Climate Change, Nature, vol. 7(4), pages 243-249, April.
    8. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Benítez-Guerrero, M. & Perejón, A. & Romeo, L.M., 2017. "The Oxy-CaL process: A novel CO2 capture system by integrating partial oxy-combustion with the Calcium-Looping process," Applied Energy, Elsevier, vol. 196(C), pages 1-17.
    2. Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
    3. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.
    4. Yu, Cheng-Hsiu & Chen, Ming-Tsz & Chen, Hao & Tan, Chung-Sung, 2016. "Effects of process configurations for combination of rotating packed bed and packed bed on CO2 capture," Applied Energy, Elsevier, vol. 175(C), pages 269-276.
    5. Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    7. Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
    8. Lee, Jui-Yuan, 2017. "A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector," Applied Energy, Elsevier, vol. 198(C), pages 12-20.
    9. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    10. Pereira, Luís M.C. & Vega, Lourdes F., 2018. "A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models," Applied Energy, Elsevier, vol. 232(C), pages 273-291.
    11. Pereira, Luís M.C. & Llovell, Fèlix & Vega, Lourdes F., 2018. "Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models," Applied Energy, Elsevier, vol. 222(C), pages 687-703.
    12. Qi, Guojie & Liu, Kun & House, Alan & Salmon, Sonja & Ambedkar, Balraj & Frimpong, Reynolds A. & Remias, Joseph E. & Liu, Kunlei, 2018. "Laboratory to bench-scale evaluation of an integrated CO2 capture system using a thermostable carbonic anhydrase promoted K2CO3 solvent with low temperature vacuum stripping," Applied Energy, Elsevier, vol. 209(C), pages 180-189.
    13. Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
    14. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    15. Wahiba Yaïci & Evgueniy Entchev & Michela Longo, 2022. "Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    16. Garlapalli, Ravinder K. & Spencer, Michael W. & Alam, Khairul & Trembly, Jason P., 2018. "Integration of heat recovery unit in coal fired power plants to reduce energy cost of carbon dioxide capture," Applied Energy, Elsevier, vol. 229(C), pages 900-909.
    17. Sreedhar, I. & Vaidhiswaran, R. & Kamani, Bansi. M. & Venugopal, A., 2017. "Process and engineering trends in membrane based carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 659-684.
    18. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Don Rukmal Liyanage & Kasun Hewage & Hirushie Karunathilake & Gyan Chhipi-Shrestha & Rehan Sadiq, 2021. "Carbon Capture Systems for Building-Level Heating Systems—A Socio-Economic and Environmental Evaluation," Sustainability, MDPI, vol. 13(19), pages 1-30, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:11:y:2021:i:4:p:807-823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.