IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v11y2021i3p483-492.html
   My bibliography  Save this article

Sealing of fractures in a representative CO2 reservoir caprock by migration of fines

Author

Listed:
  • Kenton A. Rod
  • Kirk J. Cantrell
  • Tamas Varga
  • Anil K. Battu
  • Christopher F. Brown

Abstract

The impact of fines migration on fracture transmissivity reduction was investigated by injecting a brine solution containing a suspension of 0.1 wt.% kaolinite particles with a mean particle size distribution of 9.6 μm through fractured shale core samples. The fractures had apertures estimated to be approximately 100 μm. A mass balance approach was used to determine the quantity of kaolinite that was deposited within the fractures (influent – effluent = amount deposited in fractures). Large fractions (44–90%) of the suspended kaolinite pumped through the fractures were deposited within the fractures. Based on fracture volumes estimated with X‐ray computed tomography, it was determined that approximately 10 to 17% of the fracture volume was filled with kaolinite at the point when flow was completely restricted. These results indicate that 100 μm fractures in CO2 reservoir caprocks could be sealed within hours if the brines passing through the fractures contain a proportional volume of particulates to the tests performed in this laboratory study. © 2021 Battelle Memorial Institute. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.

Suggested Citation

  • Kenton A. Rod & Kirk J. Cantrell & Tamas Varga & Anil K. Battu & Christopher F. Brown, 2021. "Sealing of fractures in a representative CO2 reservoir caprock by migration of fines," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 483-492, June.
  • Handle: RePEc:wly:greenh:v:11:y:2021:i:3:p:483-492
    DOI: 10.1002/ghg.2061
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2061
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bouchard, R & Delaytermoz, A, 2004. "Integrated path towards geological storage," Energy, Elsevier, vol. 29(9), pages 1339-1346.
    2. Brian Ellis & Catherine Peters & Jeffrey Fitts & Grant Bromhal & Dustin McIntyre & Robert Warzinski & Eilis Rosenbaum, 2011. "Deterioration of a fractured carbonate caprock exposed to CO 2 ‐acidified brine flow," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(3), pages 248-260, September.
    3. Juan Alcalde & Stephanie Flude & Mark Wilkinson & Gareth Johnson & Katriona Edlmann & Clare E. Bond & Vivian Scott & Stuart M. V. Gilfillan & Xènia Ogaya & R. Stuart Haszeldine, 2018. "Estimating geological CO2 storage security to deliver on climate mitigation," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Ahmadinia & Seyed M. Shariatipour, 2021. "A study on the impact of storage boundary and caprock morphology on carbon sequestration in saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 183-205, February.
    2. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    3. Ghanbari, Saeed & Mackay, Eric J. & Heinemann, Niklas & Alcalde, Juan & James, Alan & Allen, Michael J., 2020. "Impact of CO2 mixing with trapped hydrocarbons on CO2 storage capacity and security: A case study from the Captain aquifer (North Sea)," Applied Energy, Elsevier, vol. 278(C).
    4. Haoyu Dou & Xuelin Dong & Zhiyin Duan & Yinji Ma & Deli Gao, 2020. "Cement Integrity Loss due to Interfacial Debonding and Radial Cracking during CO 2 Injection," Energies, MDPI, vol. 13(17), pages 1-18, September.
    5. Halliday, Cameron & Hatton, T. Alan, 2020. "The potential of molten metal oxide sorbents for carbon capture at high temperature: Conceptual design," Applied Energy, Elsevier, vol. 280(C).
    6. Connelly, D.P. & Bull, J.M. & Flohr, A. & Schaap, A. & Koopmans, D. & Blackford, J.C. & White, P.R. & James, R.H. & Pearce, C. & Lichtschlag, A. & Achterberg, E.P. & de Beer, D. & Roche, B. & Li, J. &, 2022. "Assuring the integrity of offshore carbon dioxide storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    7. Ouyang, Mingwei & Cao, Yan, 2023. "Utilizations of reaction exothermic heat to compensate the cost of the permanent CO2 sequestration through the geological mineral CO2 carbonation," Energy, Elsevier, vol. 284(C).
    8. Vafaie, Atefeh & Cama, Jordi & Soler, Josep M. & Kivi, Iman R. & Vilarrasa, Victor, 2023. "Chemo-hydro-mechanical effects of CO2 injection on reservoir and seal rocks: A review on laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    9. Ulrich Wolfgang Weber & Niko Kampman & Anja Sundal, 2021. "Techno-Economic Aspects of Noble Gases as Monitoring Tracers," Energies, MDPI, vol. 14(12), pages 1-17, June.
    10. Ajay Gambhir & Shivika Mittal & Robin D. Lamboll & Neil Grant & Dan Bernie & Laila Gohar & Adam Hawkes & Alexandre Köberle & Joeri Rogelj & Jason A. Lowe, 2023. "Adjusting 1.5 degree C climate change mitigation pathways in light of adverse new information," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    12. Jing, Jing & Yang, Yanlin & Tang, Zhonghua, 2021. "Assessing the influence of injection temperature on CO2 storage efficiency and capacity in the sloping formation with fault," Energy, Elsevier, vol. 215(PA).
    13. Mark E. Capron & Jim R. Stewart & Antoine de Ramon N’Yeurt & Michael D. Chambers & Jang K. Kim & Charles Yarish & Anthony T. Jones & Reginald B. Blaylock & Scott C. James & Rae Fuhrman & Martin T. She, 2020. "Restoring Pre-Industrial CO 2 Levels While Achieving Sustainable Development Goals," Energies, MDPI, vol. 13(18), pages 1-30, September.
    14. Bong Jae Lee & Jeong Il Lee & Soo Young Yun & Cheol-Soo Lim & Young-Kwon Park, 2020. "Economic Evaluation of Carbon Capture and Utilization Applying the Technology of Mineral Carbonation at Coal-Fired Power Plant," Sustainability, MDPI, vol. 12(15), pages 1-14, July.
    15. Vo Thanh, Hung & Lee, Kang-Kun, 2022. "Application of machine learning to predict CO2 trapping performance in deep saline aquifers," Energy, Elsevier, vol. 239(PE).
    16. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    17. Callas, Catherine & Saltzer, Sarah D. & Steve Davis, J. & Hashemi, Sam S. & Kovscek, Anthony R. & Okoroafor, Esuru R. & Wen, Gege & Zoback, Mark D. & Benson, Sally M., 2022. "Criteria and workflow for selecting depleted hydrocarbon reservoirs for carbon storage," Applied Energy, Elsevier, vol. 324(C).
    18. Gilmore, Nicholas & Koskinen, Ilpo & van Gennip, Domenique & Paget, Greta & Burr, Patrick A. & Obbard, Edward G. & Daiyan, Rahman & Sproul, Alistair & Kay, Merlinde & Lennon, Alison & Konstantinou, Ge, 2022. "Clean energy futures: An Australian based foresight study," Energy, Elsevier, vol. 260(C).
    19. Sun, Xiaolong & Alcalde, Juan & Bakhtbidar, Mahdi & Elío, Javier & Vilarrasa, Víctor & Canal, Jacobo & Ballesteros, Julio & Heinemann, Niklas & Haszeldine, Stuart & Cavanagh, Andrew & Vega-Maza, David, 2021. "Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain," Applied Energy, Elsevier, vol. 300(C).
    20. Mouli-Castillo, Julien & Heinemann, Niklas & Edlmann, Katriona, 2021. "Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study," Applied Energy, Elsevier, vol. 283(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:11:y:2021:i:3:p:483-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.