IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v34y2023i3ne2795.html
   My bibliography  Save this article

Smooth copula‐based generalized extreme value model and spatial interpolation for extreme rainfall in Central Eastern Canada

Author

Listed:
  • Fatima Palacios‐Rodriguez
  • Elena Di Bernardino
  • Melina Mailhot

Abstract

This paper proposes a smooth copula‐based Generalized Extreme Value (GEV) model to map and predict extreme rainfall in Central Eastern Canada. The considered data contains a large portion of missing values, and one observes several nonconcomitant record periods at different stations. The proposed two‐step approach combines GEV parameters' smooth functions in space through the use of spatial covariates and a flexible hierarchical copula‐based model to take into account dependence between the recording stations. The hierarchical copula structure is detected via a clustering algorithm implemented with an adapted version of the copula‐based dissimilarity measure recently introduced in the literature. Finally, we compare the classical GEV parameter interpolation approaches with the proposed smooth copula‐based GEV modeling approach.

Suggested Citation

  • Fatima Palacios‐Rodriguez & Elena Di Bernardino & Melina Mailhot, 2023. "Smooth copula‐based generalized extreme value model and spatial interpolation for extreme rainfall in Central Eastern Canada," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
  • Handle: RePEc:wly:envmet:v:34:y:2023:i:3:n:e2795
    DOI: 10.1002/env.2795
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2795
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hofert, Marius & Pham, David, 2013. "Densities of nested Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 37-52.
    2. Segers, Johan, 2015. "Hybrid copula estimators," LIDAM Reprints ISBA 2015005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
    4. Eric A. Lehmann & Aloke Phatak & Alec Stephenson & Rex Lau, 2016. "Spatial modelling framework for the characterisation of rainfall extremes at different durations and under climate change," Environmetrics, John Wiley & Sons, Ltd., vol. 27(4), pages 239-251, June.
    5. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    6. Cooley, Daniel & Nychka, Douglas & Naveau, Philippe, 2007. "Bayesian Spatial Modeling of Extreme Precipitation Return Levels," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 824-840, September.
    7. Jonathan Jalbert & Christian Genest & Luc Perreault, 2022. "Interpolation of Precipitation Extremes on a Large Domain Toward IDF Curve Construction at Unmonitored Locations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 461-486, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    2. Jonathan Jalbert & Christian Genest & Luc Perreault, 2022. "Interpolation of Precipitation Extremes on a Large Domain Toward IDF Curve Construction at Unmonitored Locations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 461-486, September.
    3. John O'Sullivan & Conor Sweeney & Andrew C. Parnell, 2020. "Bayesian spatial extreme value analysis of maximum temperatures in County Dublin, Ireland," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    4. Joshua Hewitt & Miranda J. Fix & Jennifer A. Hoeting & Daniel S. Cooley, 2019. "Improved Return Level Estimation via a Weighted Likelihood, Latent Spatial Extremes Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 426-443, September.
    5. Boulin, Alexis & Di Bernardino, Elena & Laloë, Thomas & Toulemonde, Gwladys, 2022. "Non-parametric estimator of a multivariate madogram for missing-data and extreme value framework," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    6. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Burda Martin & Bélisle Louis, 2019. "Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo," Dependence Modeling, De Gruyter, vol. 7(1), pages 133-149, January.
    8. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    9. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    10. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    11. Bu, Ruijun & Cheng, Jie & Hadri, Kaddour, 2016. "Reducible diffusions with time-varying transformations with application to short-term interest rates," Economic Modelling, Elsevier, vol. 52(PA), pages 266-277.
    12. Hans Manner & Bertrand Candelon, 2010. "Testing For Asset Market Linkages: A New Approach Based On Time‐Varying Copulas," Pacific Economic Review, Wiley Blackwell, vol. 15(3), pages 364-384, August.
    13. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    14. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    15. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    16. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    17. Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.
    18. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    19. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    20. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:34:y:2023:i:3:n:e2795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.