IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v33y2022i4ne2723.html
   My bibliography  Save this article

A spatiotemporal analysis of NO2 concentrations during the Italian 2020 COVID‐19 lockdown

Author

Listed:
  • Guido Fioravanti
  • Michela Cameletti
  • Sara Martino
  • Giorgio Cattani
  • Enrico Pisoni

Abstract

When a new environmental policy or a specific intervention is taken in order to improve air quality, it is paramount to assess and quantify—in space and time—the effectiveness of the adopted strategy. The lockdown measures taken worldwide in 2020 to reduce the spread of the SARS‐CoV‐2 virus can be envisioned as a policy intervention with an indirect effect on air quality. In this paper we propose a statistical spatiotemporal model as a tool for intervention analysis, able to take into account the effect of weather and other confounding factor, as well as the spatial and temporal correlation existing in the data. In particular, we focus here on the 2019/2020 relative change in nitrogen dioxide (NO2) concentrations in the north of Italy, for the period of March and April during which the lockdown measure was in force. We found that during March and April 2020 most of the studied area is characterized by negative relative changes (median values around −25%), with the exception of the first week of March and the fourth week of April (median values around 5%). As these changes cannot be attributed to a weather effect, it is likely that they are a byproduct of the lockdown measures. There are two aspects of our research that are equally interesting. First, we provide a unique statistical perspective for calculating the relative change in the NO2 by jointly modeling pollutant concentrations time series. Second, as an output we provide a collection of weekly continuous maps, describing the spatial pattern of the NO2 2019/2020 relative changes.

Suggested Citation

  • Guido Fioravanti & Michela Cameletti & Sara Martino & Giorgio Cattani & Enrico Pisoni, 2022. "A spatiotemporal analysis of NO2 concentrations during the Italian 2020 COVID‐19 lockdown," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
  • Handle: RePEc:wly:envmet:v:33:y:2022:i:4:n:e2723
    DOI: 10.1002/env.2723
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2723
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michela Cameletti & Finn Lindgren & Daniel Simpson & Håvard Rue, 2013. "Spatio-temporal modeling of particulate matter concentration through the SPDE approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 109-131, April.
    2. Michele Pezzagno & Anna Richiedei & Maurizio Tira, 2020. "Spatial Planning Policy for Sustainability: Analysis Connecting Land Use and GHG Emission in Rural Areas," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    3. Fabio Crameri & Grace E. Shephard & Philip J. Heron, 2020. "The misuse of colour in science communication," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
    5. Francesco Finazzi & E. Marian Scott & Alessandro Fassò, 2013. "A model-based framework for air quality indices and population risk evaluation, with an application to the analysis of Scottish air quality data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(2), pages 287-308, March.
    6. Xiangyu Zheng & Bin Guo & Jing He & Song Xi Chen, 2021. "Effects of corona virus disease‐19 control measures on air quality in North China," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    7. Geir-Arne Fuglstad & Daniel Simpson & Finn Lindgren & Håvard Rue, 2019. "Constructing Priors that Penalize the Complexity of Gaussian Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 445-452, January.
    8. Sigrunn Holbek Sørbye & Håvard Rue, 2017. "Penalised Complexity Priors for Stationary Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 923-935, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Zhang & Song Xi Chen & Le Bao, 2023. "Air pollution estimation under air stagnation—A case study of Beijing," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    2. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacqueline D. Seufert & Andre Python & Christoph Weisser & Elías Cisneros & Krisztina Kis‐Katos & Thomas Kneib, 2022. "Mapping ex ante risks of COVID‐19 in Indonesia using a Bayesian geostatistical model on airport network data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2121-2155, October.
    2. I. Gede Nyoman Mindra Jaya & Henk Folmer, 2022. "Spatiotemporal high-resolution prediction and mapping: methodology and application to dengue disease," Journal of Geographical Systems, Springer, vol. 24(4), pages 527-581, October.
    3. Peter A. Gao & Hannah M. Director & Cecilia M. Bitz & Adrian E. Raftery, 2022. "Probabilistic Forecasts of Arctic Sea Ice Thickness," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 280-302, June.
    4. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    5. Jussi Jousimo & Otso Ovaskainen, 2016. "A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-19, September.
    6. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    7. Damaris K. Kinyoki & Samuel O. Manda & Grainne M. Moloney & Elijah O. Odundo & James A. Berkley & Abdisalan M. Noor & Ngianga-Bakwin Kandala, 2017. "Modelling the Ecological Comorbidity of Acute Respiratory Infection, Diarrhoea and Stunting among Children Under the Age of 5 Years in Somalia," International Statistical Review, International Statistical Institute, vol. 85(1), pages 164-176, April.
    8. Paige, John & Fuglstad, Geir-Arne & Riebler, Andrea & Wakefield, Jon, 2022. "Bayesian multiresolution modeling of georeferenced data: An extension of ‘LatticeKrig’," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    9. C. Forlani & S. Bhatt & M. Cameletti & E. Krainski & M. Blangiardo, 2020. "A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    10. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    11. Tim C. D. Lucas & Anita K. Nandi & Elisabeth G. Chestnutt & Katherine A. Twohig & Suzanne H. Keddie & Emma L. Collins & Rosalind E. Howes & Michele Nguyen & Susan F. Rumisha & Andre Python & Rohan Ara, 2021. "Mapping malaria by sharing spatial information between incidence and prevalence data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 733-749, June.
    12. Wilson, Bradley, 2020. "Evaluating the INLA-SPDE approach for Bayesian modeling of earthquake damages from geolocated cluster data," Earth Arxiv 64whm, Center for Open Science.
    13. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    14. Zongyuan Xia & Bo Tang & Long Qin & Huiguo Zhang & Xijian Hu, 2023. "Spatially Dependent Bayesian Modeling of Geostatistics Data and Its Application for Tuberculosis (TB) in China," Mathematics, MDPI, vol. 11(19), pages 1-15, October.
    15. Márcio Poletti Laurini, 2017. "A continuous spatio-temporal model for house prices in the USA," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 58(1), pages 235-269, January.
    16. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    17. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    18. Layla Höckerstedt & Elina Numminen & Ben Ashby & Mike Boots & Anna Norberg & Anna-Liisa Laine, 2022. "Spatially structured eco-evolutionary dynamics in a host-pathogen interaction render isolated populations vulnerable to disease," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Jiao Zhang & Qian Wang & Yiping Xia & Katsunori Furuya, 2022. "Knowledge Map of Spatial Planning and Sustainable Development: A Visual Analysis Using CiteSpace," Land, MDPI, vol. 11(3), pages 1-24, February.
    20. Braulio-Gonzalo, Marta & Bovea, María D. & Jorge-Ortiz, Andrea & Juan, Pablo, 2021. "Which is the best-fit response variable for modelling the energy consumption of households? An analysis based on survey data," Energy, Elsevier, vol. 231(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:33:y:2022:i:4:n:e2723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.