IDEAS home Printed from https://ideas.repec.org/a/vrs/ceuecj/v10y2023i57p343-370n11.html
   My bibliography  Save this article

Combining forecasts? Keep it simple

Author

Listed:
  • Lis Szymon

    (University of Warsaw, Faculty of Economic Sciences, 44/50 Długa street, 00-241 Warsaw, Poland)

  • Chlebus Marcin

    (University of Warsaw, Faculty of Economic Sciences, 44/50 Długa street, 00-241 Warsaw, Poland)

Abstract

This study contrasts GARCH models with diverse combined forecast techniques for Commodities Value at Risk (VaR) modeling, aiming to enhance accuracy and provide novel insights. Employing daily returns data from 2000 to 2020 for gold, silver, oil, gas, and copper, various combination methods are evaluated using the Model Confidence Set (MCS) procedure.

Suggested Citation

  • Lis Szymon & Chlebus Marcin, 2023. "Combining forecasts? Keep it simple," Central European Economic Journal, Sciendo, vol. 10(57), pages 343-370, January.
  • Handle: RePEc:vrs:ceuecj:v:10:y:2023:i:57:p:343-370:n:11
    DOI: 10.2478/ceej-2023-0020
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/ceej-2023-0020
    Download Restriction: no

    File URL: https://libkey.io/10.2478/ceej-2023-0020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
    2. Yiuman Tse, 2016. "Asymmetric Volatility, Skewness, and Downside Risk in Different Asset Classes: Evidence from Futures Markets," The Financial Review, Eastern Finance Association, vol. 51(1), pages 83-111, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
    2. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    3. Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf & Al-Freedi, Ajab, 2020. "Forecasting volatility in the petroleum futures markets: A re-examination and extension," Energy Economics, Elsevier, vol. 86(C).
    4. Lyócsa, Štefan & Todorova, Neda, 2020. "Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 628-645.
    5. Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
    6. Yiuman Tse, 2018. "Return predictability and contrarian profits of international index futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(7), pages 788-803, July.
    7. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    8. Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
    9. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    10. Rehman, Mobeen Ur & Owusu Junior, Peterson & Ahmad, Nasir & Vo, Xuan Vinh, 2022. "Time-varying risk analysis for commodity futures," Resources Policy, Elsevier, vol. 78(C).
    11. Kim, Abby Y. & Tse, Yiuman & Wald, John K., 2016. "Time series momentum and volatility scaling," Journal of Financial Markets, Elsevier, vol. 30(C), pages 103-124.
    12. Yanqiong Liu & Zhenghui Li & Yanyan Yao & Hao Dong, 2021. "Asymmetry of Risk Evolution in Crude Oil Market: From the Perspective of Dual Attributes of Oil," Energies, MDPI, vol. 14(13), pages 1-22, July.
    13. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    14. Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
    15. Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
    16. Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).
    17. Peng, Wei, 2023. "The impact of oil and natural gas prices on overnight risk in exchange rates based on the MVMQ-CAViaR models," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 616-625.
    18. Owusu Junior, Peterson & Tiwari, Aviral Kumar & Tweneboah, George & Asafo-Adjei, Emmanuel, 2022. "GAS and GARCH based value-at-risk modeling of precious metals," Resources Policy, Elsevier, vol. 75(C).
    19. Kao, Wei-Shun & Lin, Chu-Hsiung & Changchien, Chang-Cheng & Wu, Chien-Hui, 2017. "Return distribution, leverage effect and spot-futures spread on the hedging effectiveness," Finance Research Letters, Elsevier, vol. 22(C), pages 158-162.
    20. Yannick Hoga & Matei Demetrescu, 2023. "Monitoring Value-at-Risk and Expected Shortfall Forecasts," Management Science, INFORMS, vol. 69(5), pages 2954-2971, May.

    More about this item

    Keywords

    Machine learning; GARCH models; combined forecasts; commodities; VaR; C53; G32; Q01;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:ceuecj:v:10:y:2023:i:57:p:343-370:n:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.