IDEAS home Printed from https://ideas.repec.org/a/vrs/auseab/v3y2015i1p67-80n4.html
   My bibliography  Save this article

Predicting Customer Churn and Retention Rates in Nigeria’s Mobile Telecommunication Industry Using Markov Chain Modelling

Author

Listed:
  • Adebiyi Sulaimon Olanrewaju

    (Department of Business Administration, Federal University of Agriculture Abeokuta (FUNAAB), PMB 2240. Abeokuta, Ogun State. Nigeria)

  • Oyatoye Emmanuel Olateju

    (Department of Business Administration, University of Lagos, Akoka, Lagos. Nigeria.)

  • Mojekwu Joseph Nnamdi

    (Department of Actuarial Science and Insurance, University of Lagos, Akoka, Lagos. Nigeria.)

Abstract

The telecommunication industry is one of the service industries that is most affected by the problem of subscribers’ churn. Although several techniques have been used to predict customer churn in developed countries, many of those studies used secondary data which are not readily available in Nigeria for researchers. This study investigates how Markov chains help in modelling and predicting the customer churn and retention rate in the Nigerian mobile telecommunication industry. The data generated through the survey were input in the Windows-based Quantitative System for Business (WinQSB) for analysis. The results reveal that in the study area MTN has the highest retention rate (86.11%), followed by GLO (70.51%), Airtel (67%), and Etisalat (67.5%). This result has implications for telecom firms’ strategies for competitive advantage in particular and survival in general.

Suggested Citation

  • Adebiyi Sulaimon Olanrewaju & Oyatoye Emmanuel Olateju & Mojekwu Joseph Nnamdi, 2015. "Predicting Customer Churn and Retention Rates in Nigeria’s Mobile Telecommunication Industry Using Markov Chain Modelling," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 3(1), pages 67-80, December.
  • Handle: RePEc:vrs:auseab:v:3:y:2015:i:1:p:67-80:n:4
    DOI: 10.1515/eb-2015-0004
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/eb-2015-0004
    Download Restriction: no

    File URL: https://libkey.io/10.1515/eb-2015-0004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J.Robert Beck & Stephen G. Pauker, 1983. "The Markov Process in Medical Prognosis," Medical Decision Making, , vol. 3(4), pages 419-458, December.
    2. K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    2. Karina Hansen & Christophe Lançon & Mondher Toumi, 2006. "Pharmacoeconomic modelling in schizophrenia," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 7(1), pages 19-29, March.
    3. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    4. Donna M. Edwards & Ross D. Shachter & Douglas K. Owens, 1998. "A Dynamic HIV-Transmission Model for Evaluating the Costs and Benefits of Vaccine Programs," Interfaces, INFORMS, vol. 28(3), pages 144-166, June.
    5. David G. Simon, 1986. "A Cost-effectiveness Analysis of Cyclosporine in Cadaveric Kidney Transplantation," Medical Decision Making, , vol. 6(4), pages 199-207, December.
    6. de Wit, G.Ardine & Ramsteijn, Paul G & de Charro, Frank Th, 1998. "Economic evaluation of end stage renal disease treatment," Health Policy, Elsevier, vol. 44(3), pages 215-232, June.
    7. Craig Fleming & John B. Wong & Alan J. Moskowitz & Stephen G. Pauker, 1988. "A Peripartum Neurologic Event: Shooting from the Hip," Medical Decision Making, , vol. 8(1), pages 55-71, February.
    8. Soyoung Park & Se-Yeong Hamm & Jinsoo Kim, 2019. "Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    9. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    10. Matthias Bogaert & Michel Ballings & Martijn Hosten & Dirk Van den Poel, 2017. "Identifying Soccer Players on Facebook Through Predictive Analytics," Decision Analysis, INFORMS, vol. 14(4), pages 274-297, December.
    11. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    12. Lukas J.A. Stalpers & Hans J.M. Van Gasteren & Willem A.J. Van Daal, 1989. "DEALE-ing with Life Expectancy and Mortality Rates," Medical Decision Making, , vol. 9(2), pages 150-152, June.
    13. Bruce A. Craig & Peter P. Sendi, 2002. "Estimation of the transition matrix of a discrete‐time Markov chain," Health Economics, John Wiley & Sons, Ltd., vol. 11(1), pages 33-42, January.
    14. Xudong Du & Mier Li & Ping Zhu & Ju Wang & Lisha Hou & Jijie Li & Hongdao Meng & Muke Zhou & Cairong Zhu, 2018. "Comparison of the flexible parametric survival model and Cox model in estimating Markov transition probabilities using real-world data," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-13, August.
    15. Gordon B. Hazen, 2022. "Augmenting Markov Cohort Analysis to Compute (Co)Variances: Implications for Strength of Cost-Effectiveness," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3170-3180, November.
    16. Franck Maunoury & Anastasiia Motrunich & Maria Palka-Santini & Stéphanie F Bernatchez & Stéphane Ruckly & Jean-François Timsit, 2015. "Cost-Effectiveness Analysis of a Transparent Antimicrobial Dressing for Managing Central Venous and Arterial Catheters in Intensive Care Units," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    17. Rowan Iskandar, 2018. "A theoretical foundation for state-transition cohort models in health decision analysis," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-11, December.
    18. Franck Maunoury & Christian Farinetto & Stéphane Ruckly & Jeremy Guenezan & Jean-Christophe Lucet & Alain Lepape & Julien Pascal & Bertrand Souweine & Olivier Mimoz & Jean-François Timsit, 2018. "Cost-effectiveness analysis of chlorhexidine-alcohol versus povidone iodine-alcohol solution in the prevention of intravascular-catheter-related bloodstream infections in France," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-16, May.
    19. Blaser, Rico & Fryzlewicz, Piotr, 2016. "Random rotation ensembles," LSE Research Online Documents on Economics 62182, London School of Economics and Political Science, LSE Library.
    20. Paul J. Roach & Craig Fleming & Michael D. Hagen & Stephen G. Pauker, 1988. "Prostatic Cancer in a Patient with Asymptomatic HIV Infection," Medical Decision Making, , vol. 8(2), pages 132-144, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:auseab:v:3:y:2015:i:1:p:67-80:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.