IDEAS home Printed from https://ideas.repec.org/a/tec/techni/v3y2021i11p1-10.html
   My bibliography  Save this article

Enhancing the aesthetic aspect of the solar systems used as facades for building by designing multi-layer optical coatings

Author

Listed:
  • Zainab I. AL-Assadi

    (Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq)

  • Fawzia Irhayyim AL-Assadi

    (Department of Architecture, college of Engineering, Baghdad University, Baghdad, Iraq)

Abstract

The design of zero-energy buildings can be depending on the effective integration of solar energy systems with building envelopes, where these systems save heat and electricity as well as enhance the aesthetic aspect of the facades. In this paper, the aspects related to the effective integration of buildings with solar energy systems (solar cells and collectors) will be discussed, as well as enhancing the aesthetic aspect of the facades, and since solar energy systems are visible to everyone, their design must adapt to the building structure and the surrounding environment. Solar energy system designers, architects, physicists and other contributors to building energy envelopes must consider the comprehensive concept of it, where buildings are part of the human and social environment and in close relationship with the natural environment, through the use of thin films technology through the design of multi-layers colored optical coatings covering solar panels for building facades. Accordingly, the energy sector should be seen as an area of aesthetic creativity. Two dielectric materials were used, the first is ThF4 with a high refractive index (1.5143) and the second is LiF with a low refractive index (1.393) and for several odd layers, starting from 3 layers and up to 21 layers and for a thicknesses of a quarter wavelength. The design Air/L/H/Glass was applied by the Mat Lab program for the seven colors of the spectrum, So, the aim of this research is determined in designing colored optical coatings for solar systems that enhance the aesthetic aspect of building facades, as well as generating thermal and electrical energy needed to operate the buildings and to find out which color has the best visible reflectivity and solar transmittance better than the rest of the spectrum, all the results exhibit that yellow color has the higher visible reflectivity and higher merit factor, so it is consider the most efficient color for coloring the solar systems than the rest of colors spectrum.

Suggested Citation

  • Zainab I. AL-Assadi & Fawzia Irhayyim AL-Assadi, 2021. "Enhancing the aesthetic aspect of the solar systems used as facades for building by designing multi-layer optical coatings," Technium, Technium Science, vol. 3(11), pages 1-10, December.
  • Handle: RePEc:tec:techni:v:3:y:2021:i:11:p:1-10
    DOI: 10.47577/technium.v3i11.5324
    as

    Download full text from publisher

    File URL: https://techniumscience.com/index.php/technium/article/view/5324/1819
    Download Restriction: no

    File URL: https://techniumscience.com/index.php/technium/article/view/5324
    Download Restriction: no

    File URL: https://libkey.io/10.47577/technium.v3i11.5324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Buonomano, A. & Forzano, C. & Kalogirou, S.A. & Palombo, A., 2019. "Building-façade integrated solar thermal collectors: Energy-economic performance and indoor comfort simulation model of a water based prototype for heating, cooling, and DHW production," Renewable Energy, Elsevier, vol. 137(C), pages 20-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khencha Khadidja & Biara Ratiba Wided & Belmili Hocine, 2020. "Techno-economic study of BIPV in typical Sahara region in Algeria," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 9(1), pages 27-57, September.
    2. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    3. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    4. Moldovan, Camelia Liliana & Păltănea, Radu & Visa, Ion, 2020. "Improvement of clear sky models for direct solar irradiance considering turbidity factor variable during the day," Renewable Energy, Elsevier, vol. 161(C), pages 559-569.
    5. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    6. Piotr Michalak, 2023. "Simulation of a Building with Hourly and Daily Varying Ventilation Flow: An Application of the Simulink S-Function," Energies, MDPI, vol. 16(24), pages 1-25, December.
    7. Andrea Frattolillo & Laura Canale & Giorgio Ficco & Costantino C. Mastino & Marco Dell’Isola, 2020. "Potential for Building Façade-Integrated Solar Thermal Collectors in a Highly Urbanized Context," Energies, MDPI, vol. 13(21), pages 1-18, November.
    8. Hassan, Atazaz & Quanfang, Chen & Abbas, Sajid & Lu, Wu & Youming, Luo, 2021. "An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator," Renewable Energy, Elsevier, vol. 179(C), pages 1849-1864.
    9. Hassan Gholami & Harald Nils Røstvik & Koen Steemers, 2021. "The Contribution of Building-Integrated Photovoltaics (BIPV) to the Concept of Nearly Zero-Energy Cities in Europe: Potential and Challenges Ahead," Energies, MDPI, vol. 14(19), pages 1-22, September.
    10. Wang, Chuyao & Ji, Jie & Zhang, Chengyan & Ke, Wei & Tang, Yayun & Tian, Xinyi, 2022. "Experimental and numerical investigation of a multi-functional photovoltaic/thermal wall: A practical application in the civil building," Energy, Elsevier, vol. 241(C).
    11. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
    12. Barone, Giovanni & Buonomano, Annamaria & Chang, Roma & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, Aggelos, 2022. "Modelling and simulation of building integrated Concentrating Photovoltaic/Thermal Glazing (CoPVTG) systems: Comprehensive energy and economic analysis," Renewable Energy, Elsevier, vol. 193(C), pages 1121-1131.
    13. Cheng, Jiaji & Niu, Shaoshuai & Kang, Moyun & Liu, Yuqi & Zhang, Feng & Qu, Wenjuan & Guan, Yu & Li, Shaoxiang, 2022. "The thermal behavior and flame retardant performance of phase change material microcapsules with modified carbon nanotubes," Energy, Elsevier, vol. 240(C).
    14. Gao, Datong & Kwan, Trevor Hocksun & Hu, Maobin & Pei, Gang, 2022. "The energy, exergy, and techno-economic analysis of a solar seasonal residual energy utilization system," Energy, Elsevier, vol. 248(C).
    15. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    16. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo & Panagopoulos, Orestis, 2019. "Photovoltaic thermal collectors: Experimental analysis and simulation model of an innovative low-cost water-based prototype," Energy, Elsevier, vol. 179(C), pages 502-516.
    17. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    18. repec:thr:techub:v:3:y:2021:i:11:p:1-10 is not listed on IDEAS
    19. Bilardo, Matteo & Ferrara, Maria & Fabrizio, Enrico, 2020. "Performance assessment and optimization of a solar cooling system to satisfy renewable energy ratio (RER) requirements in multi-family buildings," Renewable Energy, Elsevier, vol. 155(C), pages 990-1008.
    20. Barone, Giovanni & Zacharopoulos, Aggelos & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn, 2022. "Concentrating PhotoVoltaic glazing (CoPVG) system: Modelling and simulation of smart building façade," Energy, Elsevier, vol. 238(PB).
    21. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Passive and active performance assessment of building integrated hybrid solar photovoltaic/thermal collector prototypes: Energy, comfort, and economic analyses," Energy, Elsevier, vol. 209(C).

    More about this item

    Keywords

    Solar systems energy; Aesthetic aspect; Optical coatings; PV; STC;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tec:techni:v:3:y:2021:i:11:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Maria Golita (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.