IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v48y2017i6p1311-1321.html
   My bibliography  Save this article

A dynamically weight adjustment in the consensus reaching process for group decision-making with hesitant fuzzy preference relations

Author

Listed:
  • Yejun Xu
  • Dou Rui
  • Huimin Wang

Abstract

The consensus reaching process is a dynamic and iterative process for improving group's consensus level before making a final decision in group decision-making (GDM). As the experts will express their opinions under their own intellectual level from different aspects, it is natural that the experts’ weights should reflect their judgment information. This paper proposes a dynamic way to adjust weights of decision-makers (DMs) automatically when they are asked to give original judgment information for GDM problems, in which the DMs express their judgment information by hesitant fuzzy preference relations (HFPRs). Two indices, an individual consensus index of hesitant fuzzy preference relation (ICIHFPR) and a group consensus index of hesitant fuzzy preference relation (GCIHFPR), are introduced. Normalisation of HFPRs with different numbers of possible values is taken into consideration for better computation and comparison. An iterative consensus reaching algorithm is presented with DMs’ weighting vector changing in each consensus reaching process and the process terminates until both the ICIHFPR and GCIHFPR are controlled within predefined thresholds. Finally, an example is illustrated and comparative analyses demonstrate the effectiveness of the proposed methods.

Suggested Citation

  • Yejun Xu & Dou Rui & Huimin Wang, 2017. "A dynamically weight adjustment in the consensus reaching process for group decision-making with hesitant fuzzy preference relations," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1311-1321, April.
  • Handle: RePEc:taf:tsysxx:v:48:y:2017:i:6:p:1311-1321
    DOI: 10.1080/00207721.2016.1255803
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2016.1255803
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2016.1255803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    2. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    3. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    4. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaojian Qu & Yefan Han & Zhong Wu & Hassan Raza, 2021. "Consensus Modeling with Asymmetric Cost Based on Data-Driven Robust Optimization," Group Decision and Negotiation, Springer, vol. 30(6), pages 1395-1432, December.
    2. Yong Liu & Ting Zhou & Wei-xue Diao & Jinhong Yi, 2022. "A multivariate minimum cost consensus approach for two-level group decision making," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 839-861, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    2. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    3. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    4. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    5. Yazidi, Anis & Ivanovska, Magdalena & Zennaro, Fabio M. & Lind, Pedro G. & Viedma, Enrique Herrera, 2022. "A new decision making model based on Rank Centrality for GDM with fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1030-1041.
    6. Heidary-Dahooie, Jalil & Rafiee, Mostafa & Mohammadi, Mehdi & Meidute-Kavaliauskienė, Ieva, 2022. "Proposing a new LSGDM framework based on BWM with hesitant fuzzy information for prioritizing blockchain adoption barriers in supply chain," Technology in Society, Elsevier, vol. 71(C).
    7. Mingwei Wang & Decui Liang & Zeshui Xu & Wen Cao, 2022. "Consensus reaching with the externality effect of social network for three-way group decisions," Annals of Operations Research, Springer, vol. 315(2), pages 707-745, August.
    8. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    9. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    10. Wenqi Liu & Hengjie Zhang & Haiming Liang & Cong-cong Li & Yucheng Dong, 2022. "Managing Consistency and Consensus Issues in Group Decision-Making with Self-Confident Additive Preference Relations and Without Feedback: A Nonlinear Optimization Method," Group Decision and Negotiation, Springer, vol. 31(1), pages 213-240, February.
    11. Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
    12. Manuel E. SANSALVADOR & José M. BROTONS, 2017. "The Application of OWAs in Expertise Processes: The Development of a Model for the Quantification of Hidden Quality Costs," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(3), pages 73-90.
    13. González-Arteaga, T. & Alcantud, J.C.R. & de Andrés Calle, R., 2016. "A cardinal dissensus measure based on the Mahalanobis distance," European Journal of Operational Research, Elsevier, vol. 251(2), pages 575-585.
    14. Fernando A. F. Ferreira & Ronald W. Spahr & Irina F. M. D. Gavancha & Amali Çipi, 2013. "Readjusting trade-offs among criteria in internal ratings of credit-scoring: an empirical essay of risk analysis in mortgage loans," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 14(4), pages 715-740, September.
    15. Paul Tae-Woo Lee & Cheng-Wei Lin & Yi-Shih Chung, 2014. "Comparison analysis for subjective and objective weights of financial positions of container shipping companies," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(3), pages 241-250, May.
    16. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    17. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.
    18. Llamazares, Bonifacio & Pérez-Asurmendi, Patrizia, 2013. "Triple-acyclicity in majorities based on difference in support," MPRA Paper 52218, University Library of Munich, Germany.
    19. Zhou-Jing Wang & Yuhong Wang & Kevin W. Li, 2016. "An Acceptable Consistency-Based Framework for Group Decision Making with Intuitionistic Preference Relations," Group Decision and Negotiation, Springer, vol. 25(1), pages 181-202, January.
    20. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:48:y:2017:i:6:p:1311-1321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.