IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i1p176-186.html
   My bibliography  Save this article

Minimising makespan on a batch processing machine using heuristics improved by an enumeration scheme

Author

Listed:
  • XiaoLin Li
  • YuPeng Li
  • Yu Wang

Abstract

Batch processing machines can process several job simultaneously and are encountered in many manufacturing environments. Jobs in a batch are processed together and have the same start and end processing time. Since jobs are non-identical in job sizes and job processing times, they should be reasonably scheduled to improve the machine utilisation and processing efficiency. Two well-known heuristics, first fit longest processing time and best fit longest processing time (BFLPT), are improved in this study by considering identical job sizes and then BFLPT is further improved by an enumeration scheme proposed. Computational experiments are conducted to evaluate the performance of the improvement and the results are compared with the existing heuristics.

Suggested Citation

  • XiaoLin Li & YuPeng Li & Yu Wang, 2017. "Minimising makespan on a batch processing machine using heuristics improved by an enumeration scheme," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 176-186, January.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:1:p:176-186
    DOI: 10.1080/00207543.2016.1200762
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1200762
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1200762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gur Mosheiov & Daniel Oron & Yaacov Ritov, 2004. "Flow‐shop batch scheduling with identical processing‐time jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 783-799, September.
    2. Xu, Rui & Chen, Huaping & Li, Xueping, 2013. "A bi-objective scheduling problem on batch machines via a Pareto-based ant colony system," International Journal of Production Economics, Elsevier, vol. 145(1), pages 371-386.
    3. Chung-Yee Lee & Reha Uzsoy & Louis A. Martin-Vega, 1992. "Efficient Algorithms for Scheduling Semiconductor Burn-In Operations," Operations Research, INFORMS, vol. 40(4), pages 764-775, August.
    4. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    5. Wang, Jun-Qiang & Leung, Joseph Y.-T., 2014. "Scheduling jobs with equal-processing-time on parallel machines with non-identical capacities to minimize makespan," International Journal of Production Economics, Elsevier, vol. 156(C), pages 325-331.
    6. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    2. Wang, Jun-Qiang & Fan, Guo-Qiang & Zhang, Yingqian & Zhang, Cheng-Wu & Leung, Joseph Y.-T., 2017. "Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes," European Journal of Operational Research, Elsevier, vol. 258(2), pages 478-490.
    3. Koh, Shie-Gheun & Koo, Pyung-Hoi & Kim, Dong-Chun & Hur, Won-Suk, 2005. "Scheduling a single batch processing machine with arbitrary job sizes and incompatible job families," International Journal of Production Economics, Elsevier, vol. 98(1), pages 81-96, October.
    4. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.
    5. Li, Kai & Jia, Zhao-hong & Leung, Joseph Y.-T., 2015. "Integrated production and delivery on parallel batching machines," European Journal of Operational Research, Elsevier, vol. 247(3), pages 755-763.
    6. Damodaran, Purushothaman & Kumar Manjeshwar, Praveen & Srihari, Krishnaswami, 2006. "Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 103(2), pages 882-891, October.
    7. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    8. Chakhlevitch, Konstantin & Glass, Celia A. & Kellerer, Hans, 2011. "Batch machine production with perishability time windows and limited batch size," European Journal of Operational Research, Elsevier, vol. 210(1), pages 39-47, April.
    9. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    10. Bo Chen & Xiaotie Deng & Wenan Zang, 2004. "On-Line Scheduling a Batch Processing System to Minimize Total Weighted Job Completion Time," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 85-95, March.
    11. Wang, Jun-Qiang & Leung, Joseph Y.-T., 2014. "Scheduling jobs with equal-processing-time on parallel machines with non-identical capacities to minimize makespan," International Journal of Production Economics, Elsevier, vol. 156(C), pages 325-331.
    12. Zhou, Shengchao & Liu, Ming & Chen, Huaping & Li, Xueping, 2016. "An effective discrete differential evolution algorithm for scheduling uniform parallel batch processing machines with non-identical capacities and arbitrary job sizes," International Journal of Production Economics, Elsevier, vol. 179(C), pages 1-11.
    13. Tang, Lixin & Zhao, Yufang, 2008. "Scheduling a single semi-continuous batching machine," Omega, Elsevier, vol. 36(6), pages 992-1004, December.
    14. Lin, Ran & Wang, Jun-Qiang & Liu, Zhixin & Xu, Jun, 2023. "Best possible algorithms for online scheduling on identical batch machines with periodic pulse interruptions," European Journal of Operational Research, Elsevier, vol. 309(1), pages 53-64.
    15. Lin, Ran & Wang, Jun-Qiang & Oulamara, Ammar, 2023. "Online scheduling on parallel-batch machines with periodic availability constraints and job delivery," Omega, Elsevier, vol. 116(C).
    16. Min Kong & Xinbao Liu & Jun Pei & Panos M. Pardalos & Nenad Mladenovic, 2020. "Parallel-batching scheduling with nonlinear processing times on a single and unrelated parallel machines," Journal of Global Optimization, Springer, vol. 78(4), pages 693-715, December.
    17. A H Kashan & B Karimi, 2008. "Scheduling a single batch-processing machine with arbitrary job sizes and incompatible job families: An ant colony framework," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1269-1280, September.
    18. Zhou, Shengchao & Xie, Jianhui & Du, Ni & Pang, Yan, 2018. "A random-keys genetic algorithm for scheduling unrelated parallel batch processing machines with different capacities and arbitrary job sizes," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 254-268.
    19. Onur Ozturk, 2020. "A bi-criteria optimization model for medical device sterilization," Annals of Operations Research, Springer, vol. 293(2), pages 809-831, October.
    20. Christoph Hertrich & Christian Weiß & Heiner Ackermann & Sandy Heydrich & Sven O. Krumke, 2020. "Scheduling a proportionate flow shop of batching machines," Journal of Scheduling, Springer, vol. 23(5), pages 575-593, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:1:p:176-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.