IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i19p5743-5759.html
   My bibliography  Save this article

A maintenance strategy for two-dimensional extended warranty based on dynamic usage rate

Author

Listed:
  • Peng Tong
  • Xuefeng Song
  • Liu Zixian

Abstract

Maintenance strategies are commonly used for repairable products or items to reduce the warranty cost in the warranty coverage. This study proposes a new warranty maintenance strategy for two-dimensional extended warranty (EW) based on dynamic usage rate. Unlike previous studies that assumed a constant usage rate, the present study regards the consumer usage rate as dynamic in the two-dimensional EW coverage. A maintenance model is constructed to determine the optimal maintenance degree of warranty claim points and help service providers accurately estimate and reduce warranty cost. A numerical example of an automobile made in China is discussed to demonstrate the effectiveness of the proposed model. The formulated model can effectively reflect the changes in the consumer usage rate and thus helps service providers develop an accurate maintenance strategy. Meanwhile, the developed model can better reduce warranty cost compared with maintenance strategies with minimal repair.

Suggested Citation

  • Peng Tong & Xuefeng Song & Liu Zixian, 2017. "A maintenance strategy for two-dimensional extended warranty based on dynamic usage rate," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5743-5759, October.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:19:p:5743-5759
    DOI: 10.1080/00207543.2017.1330573
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1330573
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1330573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Ying & Xia, Tangbin & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2022. "Optimal maintenance service strategy for OEM entering competitive MRO market under opposite patterns," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Zhao, Xiujie & He, Shuguang & Xie, Min, 2018. "Utilizing experimental degradation data for warranty cost optimization under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 108-119.
    3. Tong Peng & Liu Chunling, 2020. "Designing differential service strategy for two-dimensional warranty based on warranty claim data under consumer-side modularisation," Journal of Risk and Reliability, , vol. 234(3), pages 550-561, June.
    4. Karar, Ahmed Noaman & Labib, Ashraf & Jones, Dylan, 2023. "Post-warranty maintenance strategy selection using shape packages process," International Journal of Production Economics, Elsevier, vol. 255(C).
    5. Lijun Shang & Guojun Shang & Qingan Qiu, 2022. "A Bivariate Post-Warranty Maintenance Model for the Product under a 2D Warranty," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    6. Lin, Kunsong & Chen, Yunxia, 2021. "Analysis of two-dimensional warranty data considering global and local dependence of heterogeneous marginals," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Rui Zheng & Chun Su & Yuqiao Zheng, 2020. "Two-stage flexible warranty decision-making considering downtime loss," Journal of Risk and Reliability, , vol. 234(3), pages 527-535, June.
    8. Shang, Lijun & Liu, Baoliang & Qiu, Qingan & Yang, Li & Du, Yongjun, 2023. "Designing warranty and maintenance policies for products subject to random working cycles," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Xiaolin Wang & Wei Xie, 2018. "Two-dimensional warranty: A literature review," Journal of Risk and Reliability, , vol. 232(3), pages 284-307, June.
    10. Safaei, Fatemeh & Taghipour, Sharareh, 2022. "Optimal preventive maintenance for repairable products with three types of failures sold under a renewable hybrid FRW/PRW policy," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Wang, Xiaolin & Li, Lishuai & Xie, Min, 2020. "An unpunctual preventive maintenance policy under two-dimensional warranty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 304-318.
    12. Yukun Wang & Yiliu Liu & Aibo Zhang, 2019. "Preventive maintenance optimization for repairable products considering two-dimensional warranty and customer satisfaction," Journal of Risk and Reliability, , vol. 233(4), pages 553-566, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:19:p:5743-5759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.