IDEAS home Printed from https://ideas.repec.org/a/taf/tjomxx/v13y2017i2p718-726.html
   My bibliography  Save this article

Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: a case study in the lower Magdalena region, Colombia

Author

Listed:
  • Nicola Clerici
  • Cesar Augusto Valbuena Calderón
  • Juan Manuel Posada

Abstract

Land cover–land use (LCLU) classification tasks can take advantage of the fusion of radar and optical remote sensing data, leading generally to increase mapping accuracy. Here we propose a methodological approach to fuse information from the new European Space Agency Sentinel-1 and Sentinel-2 imagery for accurate land cover mapping of a portion of the Lower Magdalena region, Colombia. Data pre-processing was carried out using the European Space Agency’s Sentinel Application Platform and the SEN2COR toolboxes. LCLU classification was performed following an object-based and spectral classification approach, exploiting also vegetation indices. A comparison of classification performance using three commonly used classification algorithms was performed. The radar and visible-near infrared integrated dataset classified with a Support Vector Machine algorithm produce the most accurate LCLU map, showing an overall classification accuracy of 88.75%, and a Kappa coefficient of 0.86. The proposed mapping approach has the main advantages of combining the all-weather capability of the radar sensor, spectrally rich information in the visible-near infrared spectrum, with the short revisit period of both satellites. The mapping results represent an important step toward future tasks of aboveground biomass and carbon estimation in the region.

Suggested Citation

  • Nicola Clerici & Cesar Augusto Valbuena Calderón & Juan Manuel Posada, 2017. "Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: a case study in the lower Magdalena region, Colombia," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 718-726, November.
  • Handle: RePEc:taf:tjomxx:v:13:y:2017:i:2:p:718-726
    DOI: 10.1080/17445647.2017.1372316
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17445647.2017.1372316
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17445647.2017.1372316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuemmerle, Tobias & Erb, Karlheinz & Meyfroidt, Patrick & Müller, Daniel & Verburg, Peter H & Estel, Stephan & Haberl, Helmut & Hostert, Patrick & Jepsen, Martin R. & Kastner, Thomas & Levers, Christi, 2013. "Challenges and opportunities in mapping land use intensity globally," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(5), pages 484-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Odile Close & Beaumont Benjamin & Sophie Petit & Xavier Fripiat & Eric Hallot, 2018. "Use of Sentinel-2 and LUCAS Database for the Inventory of Land Use, Land Use Change, and Forestry in Wallonia, Belgium," Land, MDPI, vol. 7(4), pages 1-16, December.
    2. Guste Metrikaityte & Jurate Suziedelyte Visockiene & Kestutis Papsys, 2022. "Digital Mapping of Land Cover Changes Using the Fusion of SAR and MSI Satellite Data," Land, MDPI, vol. 11(7), pages 1-20, July.
    3. Paolo De Fioravante & Tania Luti & Alice Cavalli & Chiara Giuliani & Pasquale Dichicco & Marco Marchetti & Gherardo Chirici & Luca Congedo & Michele Munafò, 2021. "Multispectral Sentinel-2 and SAR Sentinel-1 Integration for Automatic Land Cover Classification," Land, MDPI, vol. 10(6), pages 1-35, June.
    4. Per Arild Garnåsjordet & Margrete Steinnes & Zofie Cimburova & Megan Nowell & David N. Barton & Iulie Aslaksen, 2020. "Urban Green. Integrating ecosystem extent and condition as a basis for ecosystem accounts. Examples from the Oslo region," Discussion Papers 941, Statistics Norway, Research Department.
    5. Tesfamariam Engida Mengesha & Lulseged Tamene Desta & Paolo Gamba & Getachew Tesfaye Ayehu, 2024. "Multi-Temporal Passive and Active Remote Sensing for Agricultural Mapping and Acreage Estimation in Context of Small Farm Holds in Ethiopia," Land, MDPI, vol. 13(3), pages 1-29, March.
    6. Willie Doaemo & Midhun Mohan & Esmaeel Adrah & Shruthi Srinivasan & Ana Paula Dalla Corte, 2020. "Exploring Forest Change Spatial Patterns in Papua New Guinea: A Pilot Study in the Bumbu River Basin," Land, MDPI, vol. 9(9), pages 1-18, August.
    7. Spicciarelli Renato & Mirauda Domenica, 2020. "Lago Grande in Monticchio Area (Southern Italy): Integrating Multitemporal Airborne Images, Satellite Images (Sentinel-2)," International Journal of Agriculture & Sustainable Development, 50sea, vol. 2(1), pages 1-23, March.
    8. Boudewijn van Leeuwen & Zalán Tobak & Ferenc Kovács, 2020. "Sentinel-1 and -2 Based near Real Time Inland Excess Water Mapping for Optimized Water Management," Sustainability, MDPI, vol. 12(7), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    2. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    3. Song, Min & Yi, Luping & Hu, Can, 2023. "Building up a compensation-oriented transferable development right mechanism: A theoretical and empirical exploration in Hubei, China," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    4. Liu, Ying & Feng, Qisheng & Wang, Chenggang & Tang, Zeng, 2018. "A risk-based model for grassland management using MODIS data: The case of Gannan region, China," Land Use Policy, Elsevier, vol. 72(C), pages 461-469.
    5. Qin Liu & Tiange Shi, 2019. "Spatiotemporal Differentiation and the Factors of Ecological Vulnerability in the Toutun River Basin Based on Remote Sensing Data," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    6. Zhao, Mingyue & Peng, Jian & Liu, Yuanxin & Li, Tianyi & Wang, Yanglin, 2018. "Mapping Watershed-Level Ecosystem Service Bundles in the Pearl River Delta, China," Ecological Economics, Elsevier, vol. 152(C), pages 106-117.
    7. Ilaria Zambon & Agostino Ferrara & Rosanna Salvia & Enrico Maria Mosconi & Luigi Fici & Rosario Turco & Luca Salvati, 2018. "Rural Districts between Urbanization and Land Abandonment: Undermining Long-Term Changes in Mediterranean Landscapes," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    8. Bayarmaa Byambaa & Walter T. de Vries, 2021. "The Production of Pastoral Space: Modeling Spatial Occupation of Grazing Land for Environmental Impact Assessment Using Structural Equation Modeling," Land, MDPI, vol. 10(2), pages 1-18, February.
    9. Yu, Qiangyi & Xiang, Mingtao & Sun, Zhanli & Wu, Wenbin, 2021. "The complexity of measuring cropland use intensity: An empirical study," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 192.
    10. Manan Bhan & Simone Gingrich & Sarah Matej & Steffen Fritz & Karl-Heinz Erb, 2021. "Land Use Increases the Correlation between Tree Cover and Biomass Carbon Stocks in the Global Tropics," Land, MDPI, vol. 10(11), pages 1-15, November.
    11. Mbanze, Aires Afonso & Viera da Silva, Carina & Ribeiro, Natasha Sofia & Silva, João F. & Santos, José Lima, 2020. "A Livelihood and Farming System approach for effective conservation policies in Protected Areas of Developing Countries: The case study of the Niassa National Reserve in Mozambique," Land Use Policy, Elsevier, vol. 99(C).
    12. Jean-François Mas & Rodrigo Nogueira de Vasconcelos & Washington Franca-Rocha, 2019. "Analysis of High Temporal Resolution Land Use/Land Cover Trajectories," Land, MDPI, vol. 8(2), pages 1-19, February.
    13. Mwambo, Francis Molua & Fürst, Christine & Nyarko, Benjamin K. & Borgemeister, Christian & Martius, Christopher, 2020. "Maize production and environmental costs: Resource evaluation and strategic land use planning for food security in northern Ghana by means of coupled emergy and data envelopment analysis," Land Use Policy, Elsevier, vol. 95(C).
    14. Mariane Paulina Batalha Roque & José Ambrósio Ferreira Neto & André Luiz Lopes Faria, 2022. "Degraded grassland and the conflict of land use in protected areas of hotspot in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1475-1492, January.
    15. Niedertscheider, Maria & Kuemmerle, Tobias & Müller, Daniel & Erb, Karl-Heinz, 2014. "Exploring the effects of drastic institutional and socio-economic changes on land system dynamics in Germany between 1883 and 2007," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 28, pages 98-108.
    16. Roux, Nicolas & Kastner, Thomas & Erb, Karl-Heinz & Haberl, Helmut, 2021. "Does agricultural trade reduce pressure on land ecosystems? Decomposing drivers of the embodied human appropriation of net primary production," Ecological Economics, Elsevier, vol. 181(C).
    17. Poku-Boansi, Michael, 2021. "Multi-stakeholder involvement in urban land use planning in the Ejisu Municipality, Ghana: An application of the social complexities’ theory," Land Use Policy, Elsevier, vol. 103(C).
    18. Wu, Wenbin & You, Liangzhi & Chen, Kevin Z., 2015. "Cropping intensity gaps: The potential for expanded global harvest areas:," IFPRI discussion papers 1459, International Food Policy Research Institute (IFPRI).
    19. Malek, Žiga & Tieskens, Koen F. & Verburg, Peter H., 2019. "Explaining the global spatial distribution of organic crop producers," Agricultural Systems, Elsevier, vol. 176(C).
    20. Lingyue Li & Zhixin Qi & Shi Xian & Dong Yao, 2021. "Agricultural Land Use Change in Chongqing and the Policy Rationale behind It: A Multiscale Perspective," Land, MDPI, vol. 10(3), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjomxx:v:13:y:2017:i:2:p:718-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjom20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.