Advanced Search
MyIDEAS: Login

Improving the J Test in the SARAR Model by Likelihood-based Estimation

Contents:

Author Info

  • Peter Burridge

Abstract

It has been demonstrated recently that in small-to-medium samples the empirical significance levels of the asymptotic J-type tests for the SARAR model introduced by Kelejian (2008) can be controlled in many cases by the use of a bootstrap to construct a reference distribution. A feature of the popular GMM estimator in this context that deserves to receive more attention is that in small samples it will often deliver spatial parameter estimates that lie outside the invertibility region of the model. Using such illegitimate estimates to construct bootstrap samples is then problematic; the present paper finds that this practical obstacle may be removed by the use of quasi-maximum likelihood estimates that guarantee invertibility. The effects of different spatial weight patterns and sample size on the empirical significance levels and power of the tests are illustrated, and the paper demonstrates that estimation using QMLE, allied to a simple bootstrap, yields tests with reliable significance levels and reasonable power, in a majority of cases. RÉSUMÉ dans des échantillons petits à moyens, il est possible, dans de nombreux cas, de contrôler les niveaux à signification empirique des tests asymptotiques introduits par Kelejian (2008) à l'aide d'un ‘bootstrap’. Dans ce contexte, une caractéristique de l'estimateur GMM, très répandu, est qu'il fournit, dans de petits échantillons, des estimations de paramètres spatiaux situés hors de la région d'inversibilité du modèle. L'emploi de telles estimations illégitimes pour la réalisation d’échantillons ‘bootstrap’ devient alors problématique; la présente communication indique que l'on peut supprimer cet obstacle pratique en utilisant le QMLE garantissant l'inversibilité. Les effets des tendances du poids spatial et la taille des échantillons sur les niveaux d'importance et la puissance sont illustrés, et la communication démontre que le QMLE, allié à un simple ‘bootstrap’, permet de réaliser des tests offrant, dans la plupart des vas, des niveaux d'importance fiables et une puissance raisonnable. EXTRACTO En muestras entre pequeñas y medianas, los niveles de significancia empírica de las pruebas asintóticas de tipo J para el modelo SARAR introducidas por Kelejian (2008) pueden controlarse en muchos casos mediante el uso de un bootstrap. Una característica del popular estimador GMM dentro de este contexto es que en las muestras pequeñas, a menudo producirá estimaciones de parámetros espaciales que están fuera de la región de reversibilidad del modelo. No obstante, el empleo de este tipo de estimaciones ilegítimas para construir muestras bootstrap es problemático; el estudio actual muestra que este obstáculo práctico puede eliminarse mediante el uso del QMLE que garantiza la reversibilidad. Se ilustran los efectos de las pautas de peso espacial y del tamaño de la muestra sobre el poder y los niveles de significancia, y el estudio demuestra que el QMLE, aliado a un bootstrap simple, dota a las pruebas de niveles de significancia fiables y de un poder razonable, en la mayoría de los casos.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1080/17421772.2011.647055
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Spatial Economic Analysis.

Volume (Year): 7 (2012)
Issue (Month): 1 (March)
Pages: 75-107

as in new window
Handle: RePEc:taf:specan:v:7:y:2012:i:1:p:75-107

Contact details of provider:
Web page: http://www.tandfonline.com/RSEA20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/RSEA20

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jesus Mur & Antonio Paez, 2011. "Local weighting or the necessity of flexibility," ERSA conference papers ersa11p942, European Regional Science Association.
  2. Herrera Gómez, Marcos & Mur Lacambra, Jesús & Ruiz Marín, Manuel, 2011. "¿Cuál matriz de pesos espaciales?. Un enfoque sobre selección de modelos
    [Which spatial weighting matrix? An approach for model selection]
    ," MPRA Paper 37585, University Library of Munich, Germany.
  3. Han, Xiaoyi & Lee, Lung-fei, 2013. "Model selection using J-test for the spatial autoregressive model vs. the matrix exponential spatial model," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 250-271.
  4. Marcos Herrera & Manuel Ruiz & Jes�s Mur, 2013. "Detecting Dependence Between Spatial Processes," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(4), pages 469-497, February.
  5. Jesus Mur & Marcos Herrera & Manuel Ruiz, 2011. "Selecting the W Matrix. Parametric vs Nonparametric Approaches," ERSA conference papers ersa11p1055, European Regional Science Association.
  6. Zhenlin Yang, 2013. "LM Tests of Spatial Dependence Based on Bootstrap Critical Values," Working Papers 03-2013, Singapore Management University, School of Economics.
  7. Jin, Fei & Lee, Lung-fei, 2013. "Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 590-616.
  8. Miguel A. Delgado & Peter M Robinson, 2013. "Non-Nested Testing of Spatial Correlation," STICERD - Econometrics Paper Series /2013/568, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:7:y:2012:i:1:p:75-107. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.