IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i517p351-362.html
   My bibliography  Save this article

Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events

Author

Listed:
  • Kwun Chuen Gary Chan
  • Mei-Cheng Wang

Abstract

Recurrent event processes with marker measurements are mostly and largely studied with forward time models starting from an initial event. Interestingly, the processes could exhibit important terminal behavior during a time period before occurrence of the failure event. A natural and direct way to study recurrent events prior to a failure event is to align the processes using the failure event as the time origin and to examine the terminal behavior by a backward time model. This article studies regression models for backward recurrent marker processes by counting time backward from the failure event. A three-level semiparametric regression model is proposed for jointly modeling the time to a failure event, the backward recurrent event process, and the marker observed at the time of each backward recurrent event. The first level is a proportional hazards model for the failure time, the second level is a proportional rate model for the recurrent events occurring before the failure event, and the third level is a proportional mean model for the marker given the occurrence of a recurrent event backward in time. By jointly modeling the three components, estimating equations can be constructed for marked counting processes to estimate the target parameters in the three-level regression models. Large sample properties of the proposed estimators are studied and established. The proposed models and methods are illustrated by a community-based AIDS clinical trial to examine the terminal behavior of frequencies and severities of opportunistic infections among HIV-infected individuals in the last 6 months of life.

Suggested Citation

  • Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:351-362
    DOI: 10.1080/01621459.2016.1140051
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1140051
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1140051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Liu & Robert A. Wolfe & Xuelin Huang, 2004. "Shared Frailty Models for Recurrent Events and a Terminal Event," Biometrics, The International Biometric Society, vol. 60(3), pages 747-756, September.
    2. D. Y. Lin, 2000. "Proportional Means Regression for Censored Medical Costs," Biometrics, The International Biometric Society, vol. 56(3), pages 775-778, September.
    3. Wang M-C. & Qin J. & Chiang C-T., 2001. "Analyzing Recurrent Event Data With Informative Censoring," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1057-1065, September.
    4. Zeng, Donglin & Lin, D.Y., 2007. "Semiparametric Transformation Models With Random Effects for Recurrent Events," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 167-180, March.
    5. Yining Ye & John D. Kalbfleisch & Douglas E. Schaubel, 2007. "Semiparametric Analysis of Correlated Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 63(1), pages 78-87, March.
    6. Chiung-Yu Huang & Mei-Cheng Wang, 2004. "Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1153-1165, December.
    7. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    8. John D. Kalbfleisch & Douglas E. Schaubel & Yining Ye & Qi Gong, 2013. "An Estimating Function Approach to the Analysis of Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 69(2), pages 366-374, June.
    9. Bradley Efron, 2002. "The two‐way proportional hazards model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 899-909, October.
    10. Kooperberg, Charles & Stone, Charles J., 1991. "A study of logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 12(3), pages 327-347, November.
    11. Huang, Yijian & Wang, Mei-Cheng, 2003. "Frequency of Recurrent Events at Failure Time: Modeling and Inference," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 663-670, January.
    12. Lin D Y & Ying Z, 2001. "Semiparametric and Nonparametric Regression Analysis of Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 103-126, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwun Chuen Gary Chan, 2018. "Commentary: Alignment of time scales and joint models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 601-604, October.
    2. Jie Zhou & Xin Chen & Xinyuan Song & Liuquan Sun, 2021. "A joint modeling approach for analyzing marker data in the presence of a terminal event," Biometrics, The International Biometric Society, vol. 77(1), pages 150-161, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    2. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    3. Xiaoyu Che & John Angus, 2016. "A new joint model of recurrent event data with the additive hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 763-787, October.
    4. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    5. Dongxiao Han & Xiaogang Su & Liuquan Sun & Zhou Zhang & Lei Liu, 2020. "Variable selection in joint frailty models of recurrent and terminal events," Biometrics, The International Biometric Society, vol. 76(4), pages 1330-1339, December.
    6. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
    7. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    8. Xingqiu Zhao & Jie Zhou & Liuquan Sun, 2011. "Semiparametric Transformation Models with Time-Varying Coefficients for Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 67(2), pages 404-414, June.
    9. Yifei Sun & Mei-Cheng Wang, 2017. "Evaluating Utility Measurement From Recurrent Marker Processes in the Presence of Competing Terminal Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 745-756, April.
    10. Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
    11. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    12. P. G. Sankaran & P. Anisha, 2011. "Shared frailty model for recurrent event data with multiple causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2859-2868, February.
    13. Qing Cai & Mei‐Cheng Wang & Kwun Chuen Gary Chan, 2017. "Joint modeling of longitudinal, recurrent events and failure time data for survivor's population," Biometrics, The International Biometric Society, vol. 73(4), pages 1150-1160, December.
    14. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    15. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    16. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
    17. Russell T. Shinohara & Yifei Sun & Mei-Cheng Wang, 2018. "Alternating event processes during lifetimes: population dynamics and statistical inference," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 110-125, January.
    18. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 2017. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 560-584, October.
    19. John D. Kalbfleisch & Douglas E. Schaubel & Yining Ye & Qi Gong, 2013. "An Estimating Function Approach to the Analysis of Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 69(2), pages 366-374, June.
    20. Zhao, Xiaobing & Zhou, Xian, 2012. "Modeling gap times between recurrent events by marginal rate function," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 370-383.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:351-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.