Advanced Search
MyIDEAS: Login to save this article or follow this journal

Semiparametric Double Balancing Score Estimation for Incomplete Data With Ignorable Missingness


Author Info

  • Zonghui Hu
  • Dean A. Follmann
  • Jing Qin
Registered author(s):


    When estimating the marginal mean response with missing observations, a critical issue is robustness to model misspecification. In this article, we propose a semiparametric estimation method with extended double robustness that attains the optimal efficiency under less stringent requirement for model specifications than the doubly robust estimators. In this semiparametric estimation, covariate information is collapsed into a two-dimensional score S , with one dimension for (i) the pattern of missingness and the other for (ii) the pattern of response, both estimated from some working parametric models. The mean response E (Y ) is then estimated by the sample mean of E (Y ∣ S), which is estimated via nonparametric regression. The semiparametric estimator is consistent if either the “core” of (i) or the “core” of (ii) is captured by S , and attains the optimal efficiency if both are captured by S . As the “cores” can be obtained without correctly specifying the full parametric models for (i) or (ii), the proposed estimator can be more robust than other doubly robust estimators. As S contains the propensity score as one component, the proposed estimator avoids the use and the shortcomings of inverse propensity weighting. This semiparametric estimator is most appealing for high-dimensional covariates, where fully correct model specification is challenging and nonparametric estimation is not feasible due to the problem of dimensionality. Numerical performance is investigated by simulation studies.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 497 (March)
    Pages: 247-257

    as in new window
    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:247-257

    Contact details of provider:
    Web page:

    Order Information:

    Related research



    No references listed on IDEAS
    You can help add them by filling out this form.



    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:247-257. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.