IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i10p1875-1892.html
   My bibliography  Save this article

A comparison of risk transfer strategies for a portfolio of life annuities based on RORAC

Author

Listed:
  • Fabio Baione
  • Paolo De Angelis
  • Massimiliano Menzietti
  • Agostino Tripodi

Abstract

This paper aims to compare different reinsurance arrangements in order to reduce the longevity and financial risk originated by a life insurer while managing a portfolio of annuities policies. Linear and nonlinear reinsurance strategies as well as swap like agreements are evaluated via a discrete-time actuarial risk model. Specifically, longevity dynamics are represented by Lee–Carter type models, while interest rate is modeled by Cox–Ingersoll–Ross model. The reinsurance strategies effectiveness is evaluated according to the Return on Risk Adjusted Capital under a ruin probability constrain.

Suggested Citation

  • Fabio Baione & Paolo De Angelis & Massimiliano Menzietti & Agostino Tripodi, 2017. "A comparison of risk transfer strategies for a portfolio of life annuities based on RORAC," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1875-1892, July.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:10:p:1875-1892
    DOI: 10.1080/02664763.2016.1238047
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1238047
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1238047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olivieri, Annamaria & Pitacco, Ermanno, 2003. "Solvency requirements for pension annuities," Journal of Pension Economics and Finance, Cambridge University Press, vol. 2(2), pages 127-157, July.
    2. Bühlmann, Hans & Jewell, William S., 1979. "Optimal Risk Exchanges," ASTIN Bulletin, Cambridge University Press, vol. 10(3), pages 243-262, December.
    3. Gajek, Leslaw & Zagrodny, Dariusz, 2004. "Optimal reinsurance under general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 227-240, April.
    4. Brown, Stephen J & Dybvig, Philip H, 1986. "The Empirical Implications of the Cox, Ingersoll, Ross Theory of the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 41(3), pages 617-630, July.
    5. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    6. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    7. Centeno, Lourdes & Simões, Onofre, 1991. "Combining Quota-Share and Excess of Loss Treaties on the Reinsurance of n Independent Risks," ASTIN Bulletin, Cambridge University Press, vol. 21(1), pages 41-55, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Longevity risk in portfolios of pension annuities," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 505-519, April.
    2. Olivieri, Annamaria & Pitacco, Ermanno, 2008. "Assessing the cost of capital for longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1013-1021, June.
    3. Rachel WINGENBACH & Jong-Min KIM & Hojin JUNG, 2020. "Living Longer in High Longevity Risk," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 86(1), pages 47-86, March.
    4. Stevens, R.S.P. & De Waegenaere, A.M.B. & Melenberg, B., 2011. "Longevity Risk and Natural Hedge Potential in Portfolios Of Life Insurance Products : The Effect of Investment Risk," Discussion Paper 2011-036, Tilburg University, Center for Economic Research.
    5. Stevens, Ralph & De Waegenaere, Anja & Melenberg, Bertrand, 2010. "Longevity risk in pension annuities with exchange options: The effect of product design," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 222-234, February.
    6. Stevens, R.S.P. & De Waegenaere, A.M.B. & Melenberg, B., 2011. "Longevity Risk and Natural Hedge Potential in Portfolios Of Life Insurance Products : The Effect of Investment Risk," Other publications TiSEM a3e07689-4b6b-4987-852c-3, Tilburg University, School of Economics and Management.
    7. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    8. Jonas Hirz & Uwe Schmock & Pavel V. Shevchenko, 2017. "Actuarial Applications and Estimation of Extended CreditRisk+," Risks, MDPI, vol. 5(2), pages 1-29, March.
    9. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    10. Geert Zittersteyn & Jennifer Alonso-García, 2021. "Common Factor Cause-Specific Mortality Model," Risks, MDPI, vol. 9(12), pages 1-30, December.
    11. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    12. Geng Niu & Bertrand Melenberg, 2014. "Trends in Mortality Decrease and Economic Growth," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1755-1773, October.
    13. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    14. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    15. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    16. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    17. Berdin, Elia, 2016. "Interest rate risk, longevity risk and the solvency of life insurers," ICIR Working Paper Series 23/16, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    18. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    19. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    20. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:10:p:1875-1892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.