IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i15p2751-2771.html
   My bibliography  Save this article

Bayesian variable selection approach to a Bernstein polynomial regression model with stochastic constraints

Author

Listed:
  • Taeryon Choi
  • Hea-Jung Kim
  • Seongil Jo

Abstract

This paper provides a Bayesian estimation procedure for monotone regression models incorporating the monotone trend constraint subject to uncertainty. For monotone regression modeling with stochastic restrictions, we propose a Bayesian Bernstein polynomial regression model using two-stage hierarchical prior distributions based on a family of rectangle-screened multivariate Gaussian distributions extended from the work of Gurtis and Ghosh [7]. This approach reflects the uncertainty about the prior constraint, and thus proposes a regression model subject to monotone restriction with uncertainty. Based on the proposed model, we derive the posterior distributions for unknown parameters and present numerical schemes to generate posterior samples. We show the empirical performance of the proposed model based on synthetic data and real data applications and compare the performance to the Bernstein polynomial regression model of Curtis and Ghosh [7] for the shape restriction with certainty. We illustrate the effectiveness of our proposed method that incorporates the uncertainty of the monotone trend and automatically adapts the regression function to the monotonicity, through empirical analysis with synthetic data and real data applications.

Suggested Citation

  • Taeryon Choi & Hea-Jung Kim & Seongil Jo, 2016. "Bayesian variable selection approach to a Bernstein polynomial regression model with stochastic constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2751-2771, November.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:15:p:2751-2771
    DOI: 10.1080/02664763.2016.1143456
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1143456
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1143456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. O. Ramsay, 1998. "Estimating smooth monotone functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 365-375.
    2. Shively, Thomas S. & Walker, Stephen G. & Damien, Paul, 2011. "Nonparametric function estimation subject to monotonicity, convexity and other shape constraints," Journal of Econometrics, Elsevier, vol. 161(2), pages 166-181, April.
    3. Lizhen Lin & David B. Dunson, 2014. "Bayesian monotone regression using Gaussian process projection," Biometrika, Biometrika Trust, vol. 101(2), pages 303-317.
    4. S. McKay Curtis & Sujit K. Ghosh, 2011. "A variable selection approach to monotonic regression with Bernstein polynomials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 961-976, February.
    5. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    6. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    7. Thomas S. Shively & Thomas W. Sager & Stephen G. Walker, 2009. "A Bayesian approach to non‐parametric monotone function estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 159-175, January.
    8. Reinaldo B. Arellano‐Valle & Adelchi Azzalini, 2006. "On the Unification of Families of Skew‐normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 561-574, September.
    9. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    10. Kim, Hea-Jung, 2008. "A class of weighted multivariate normal distributions and its properties," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1758-1771, September.
    11. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    12. Mary Meyer & Amber Hackstadt & Jennifer Hoeting, 2011. "Bayesian estimation and inference for generalised partial linear models using shape-restricted splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 867-884.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Liu & Xiaojing Wang, 2020. "Bayesian Nonparametric Monotone Regression of Dynamic Latent Traits in Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 274-296, June.
    2. Edwin Fourrier-Nicolai & Michel Lubrano, 2022. "Bayesian inference for non-anonymous Growth Incidence Curves using Bernstein polynomials: an application to academic wage dynamics," Working Papers hal-03880243, HAL.
    3. Edwin Fourrier-Nicolaï & Michel Lubrano, 2023. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Post-Print hal-04356211, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    2. Hazelton, Martin L. & Turlach, Berwin A., 2011. "Semiparametric regression with shape-constrained penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2871-2879, October.
    3. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    4. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    5. Christophe Abraham & Khader Khadraoui, 2015. "Bayesian regression with B-splines under combinations of shape constraints and smoothness properties," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(2), pages 150-170, May.
    6. Brezger, Andreas & Kneib, Thomas & Lang, Stefan, 2005. "BayesX: Analyzing Bayesian Structural Additive Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i11).
    7. C Rohrbeck & D A Costain & A Frigessi, 2018. "Bayesian spatial monotonic multiple regression," Biometrika, Biometrika Trust, vol. 105(3), pages 691-707.
    8. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    9. Thaden, Hauke & Klein, Nadja & Kneib, Thomas, 2019. "Multivariate effect priors in bivariate semiparametric recursive Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 51-66.
    10. Simon J. Bonner & Carl J. Schwarz, 2011. "Smoothing Population Size Estimates for Time-Stratified Mark–Recapture Experiments Using Bayesian P-Splines," Biometrics, The International Biometric Society, vol. 67(4), pages 1498-1507, December.
    11. Marc Aerts & Niel Hens & Jeffrey Simonoff, 2010. "Model selection in regression based on pre-smoothing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1455-1472.
    12. Bellio, Ruggero & Grassetti, Luca, 2011. "Semiparametric stochastic frontier models for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 71-83, January.
    13. Manuguerra Maurizio & Heller Gillian Z, 2010. "Ordinal Regression Models for Continuous Scales," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-20, April.
    14. Ander Wilson & Jessica Tryner & Christian L'Orange & John Volckens, 2020. "Bayesian nonparametric monotone regression," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    15. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    16. O. Gimenez & C. Crainiceanu & C. Barbraud & S. Jenouvrier & B. J. T. Morgan, 2006. "Semiparametric Regression in Capture–Recapture Modeling," Biometrics, The International Biometric Society, vol. 62(3), pages 691-698, September.
    17. Katrien Antonio & Jan Beirlant, 2008. "Issues in Claims Reserving and Credibility: A Semiparametric Approach With Mixed Models," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 643-676, September.
    18. Ander Wilson & David M. Reif & Brian J. Reich, 2014. "Hierarchical dose–response modeling for high-throughput toxicity screening of environmental chemicals," Biometrics, The International Biometric Society, vol. 70(1), pages 237-246, March.
    19. Cai, Bo & Meyer, Renate, 2011. "Bayesian semiparametric modeling of survival data based on mixtures of B-spline distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1260-1272, March.
    20. Yang Liu & Xiaojing Wang, 2020. "Bayesian Nonparametric Monotone Regression of Dynamic Latent Traits in Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 274-296, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:15:p:2751-2771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.