IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v37y2010i9p1455-1472.html
   My bibliography  Save this article

Model selection in regression based on pre-smoothing

Author

Listed:
  • Marc Aerts
  • Niel Hens
  • Jeffrey Simonoff

Abstract

In this paper, we investigate the effect of pre-smoothing on model selection. Christobal et al 6 showed the beneficial effect of pre-smoothing on estimating the parameters in a linear regression model. Here, in a regression setting, we show that smoothing the response data prior to model selection by Akaike's information criterion can lead to an improved selection procedure. The bootstrap is used to control the magnitude of the random error structure in the smoothed data. The effect of pre-smoothing on model selection is shown in simulations. The method is illustrated in a variety of settings, including the selection of the best fractional polynomial in a generalized linear model.

Suggested Citation

  • Marc Aerts & Niel Hens & Jeffrey Simonoff, 2010. "Model selection in regression based on pre-smoothing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1455-1472.
  • Handle: RePEc:taf:japsta:v:37:y:2010:i:9:p:1455-1472
    DOI: 10.1080/02664760903046086
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760903046086
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760903046086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sung-Soo Kim & Sung Park & W. J. Krzanowski, 2008. "Simultaneous variable selection and outlier identification in linear regression using the mean-shift outlier model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 283-291.
    2. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    3. Wei Pan, 2001. "Model Selection in Estimating Equations," Biometrics, The International Biometric Society, vol. 57(2), pages 529-534, June.
    4. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    5. Wei Pan, 2001. "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 57(1), pages 120-125, March.
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    7. Hoeting, Jennifer & Raftery, Adrian E. & Madigan, David, 1996. "A method for simultaneous variable selection and outlier identification in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 22(3), pages 251-270, July.
    8. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    9. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    2. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    3. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    4. Nagler Thomas & Czado Claudia & Schellhase Christian, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    5. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    6. Beck, Jonathan, 2008. "Diderot´s rule," Discussion Papers, Research Unit: Competition and Innovation SP II 2008-13, WZB Berlin Social Science Center.
    7. Brezger, Andreas & Kneib, Thomas & Lang, Stefan, 2005. "BayesX: Analyzing Bayesian Structural Additive Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i11).
    8. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    9. Thaden, Hauke & Klein, Nadja & Kneib, Thomas, 2019. "Multivariate effect priors in bivariate semiparametric recursive Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 51-66.
    10. Simon J. Bonner & Carl J. Schwarz, 2011. "Smoothing Population Size Estimates for Time-Stratified Mark–Recapture Experiments Using Bayesian P-Splines," Biometrics, The International Biometric Society, vol. 67(4), pages 1498-1507, December.
    11. Dursun Aydın & Ersin Yılmaz, 2021. "Semiparametric modeling of the right-censored time-series based on different censorship solution techniques," Empirical Economics, Springer, vol. 61(4), pages 2143-2172, October.
    12. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    13. Manuguerra Maurizio & Heller Gillian Z, 2010. "Ordinal Regression Models for Continuous Scales," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-20, April.
    14. Jan Serroyen & Geert Molenberghs & Marc Aerts & Ellen Vloeberghs & Peter Paul De Deyn & Geert Verbeke, 2010. "Flexible estimation of serial correlation in nonlinear mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 833-846.
    15. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    16. O. Gimenez & C. Crainiceanu & C. Barbraud & S. Jenouvrier & B. J. T. Morgan, 2006. "Semiparametric Regression in Capture–Recapture Modeling," Biometrics, The International Biometric Society, vol. 62(3), pages 691-698, September.
    17. Katrien Antonio & Jan Beirlant, 2008. "Issues in Claims Reserving and Credibility: A Semiparametric Approach With Mixed Models," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 643-676, September.
    18. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    19. Rose Baker & Dan Jackson, 2014. "Statistical application of barycentric rational interpolants: an alternative to splines," Computational Statistics, Springer, vol. 29(5), pages 1065-1081, October.
    20. Cai, Bo & Meyer, Renate, 2011. "Bayesian semiparametric modeling of survival data based on mixtures of B-spline distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1260-1272, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:37:y:2010:i:9:p:1455-1472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.