Advanced Search
MyIDEAS: Login to save this article or follow this journal

Modelling and trading the EUR/USD exchange rate at the ECB fixing

Contents:

Author Info

  • Christian Dunis
  • Jason Laws
  • Georgios Sermpinis
Registered author(s):

    Abstract

    The motivation for this paper is to investigate the use of alternative novel neural network (NN) architectures when applied to the task of forecasting and trading the euro/dollar (EUR/USD) exchange rate, using the European Central Bank (ECB) fixing series with only auto-regressive terms as inputs. This is done by benchmarking four different NN designs representing a higher-order neural network (HONN), a Psi Sigma Network and a recurrent neural network with the classic multilayer perception (MLP) and some traditional techniques, either statistical such as an auto-regressive moving average model, or technical such as a moving average convergence/divergence model, plus a naive strategy. More specifically, the trading performance of all models is investigated in a forecast and trading simulation on the EUR/USD ECB fixing time series over the period 1999-2007 using the last one and half years for out-of-sample testing, an original feature of this paper. We use the EUR/USD daily fixing by the ECB as many financial institutions are ready to trade at this level and it is therefore possible to leave orders with a bank for business to be transacted on that basis. As it turns out, the MLP does remarkably well and outperforms all other models in a simple trading simulation exercise. However, when more sophisticated trading strategies using confirmation filters and leverage are applied, the HONN network produces better results and outperforms all other NN and traditional statistical models in terms of annualized return.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470903037771
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal The European Journal of Finance.

    Volume (Year): 16 (2010)
    Issue (Month): 6 ()
    Pages: 541-560

    as in new window
    Handle: RePEc:taf:eurjfi:v:16:y:2010:i:6:p:541-560

    Contact details of provider:
    Web page: http://www.tandfonline.com/REJF20

    Order Information:
    Web: http://www.tandfonline.com/pricing/journal/REJF20

    Related research

    Keywords: confirmation filters; higher-order neural networks; Psi Sigma networks; recurrent neural networks; leverage; multi-layer perception networks; quantitative trading strategies;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Ortiz-Arango, Francisco & Cabrera-Llanos, Agustín I. & Venegas-Martínez, Francisco, 2014. "Euro Exchange Rate Forecasting with Differential Neural Networks with an Extended Tracking Procedure," MPRA Paper 57720, University Library of Munich, Germany.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:16:y:2010:i:6:p:541-560. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.