IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v72y2018i2p158-162.html
   My bibliography  Save this article

Visualizing Type II Error in Normality Tests

Author

Listed:
  • José A. Sánchez-Espigares
  • Pere Grima
  • Lluís Marco-Almagro

Abstract

A skewed exponential power distribution, with parameters defining kurtosis and skewness, is introduced as a way to visualize Type II error in normality tests. By varying these parameters a mosaic of distributions is built, ranging from double exponential to uniform or from positive to negative exponential; the normal distribution is a particular case located in the center of the mosaic. Using a sequential color scheme, a different color is assigned to each distribution in the mosaic depending on the probability of committing a Type II error. This graph gives a visual representation of the power of the performed test. This way of representing results facilitates the comparison of the power of various tests and the influence of sample size. A script to perform this graphical representation, programmed in the R statistical software, is available online as supplementary material.

Suggested Citation

  • José A. Sánchez-Espigares & Pere Grima & Lluís Marco-Almagro, 2018. "Visualizing Type II Error in Normality Tests," The American Statistician, Taylor & Francis Journals, vol. 72(2), pages 158-162, April.
  • Handle: RePEc:taf:amstat:v:72:y:2018:i:2:p:158-162
    DOI: 10.1080/00031305.2016.1278035
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2016.1278035
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2016.1278035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    2. Sivan Aldor-Noiman & Lawrence D. Brown & Andreas Buja & Wolfgang Rolke & Robert A. Stine, 2013. "The Power to See: A New Graphical Test of Normality," The American Statistician, Taylor & Francis Journals, vol. 67(4), pages 249-260, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    2. Xianzi Yang & Chen Zhang & Yu Yang & Yaqi Wu & Po Yun & Zulfiqar Ali Wagan, 2020. "China’s Carbon Pricing Based on Heterogeneous Tail Distribution," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    3. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    4. Dmitry I. Malakhov & Nikolay P. Pilnik & Igor G. Pospelov, 2015. "Stability of Distribution of Relative Sizes of Banks as an Argument for the Use of the Representative Agent Concept," HSE Working papers WP BRP 116/EC/2015, National Research University Higher School of Economics.
    5. Emmanuel Afuecheta & Idika E. Okorie & Saralees Nadarajah & Geraldine E. Nzeribe, 2024. "Forecasting Value at Risk and Expected Shortfall of Foreign Exchange Rate Volatility of Major African Currencies via GARCH and Dynamic Conditional Correlation Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 271-304, January.
    6. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723.
    7. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    8. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    9. Reiner Franke, 2015. "How Fat-Tailed is US Output Growth?," Metroeconomica, Wiley Blackwell, vol. 66(2), pages 213-242, May.
    10. Mahdi Teimouri & Saralees Nadarajah, 2022. "Maximum Likelihood Estimation for the Asymmetric Exponential Power Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 665-692, August.
    11. Francq, Christian & Jiménez Gamero, Maria Dolores & Meintanis, Simos, 2015. "Tests for sphericity in multivariate garch models," MPRA Paper 67411, University Library of Munich, Germany.
    12. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    13. Huber, Peter & Oberhofer, Harald & Pfaffermayr, Michael, 2017. "Who creates jobs? Econometric modeling and evidence for Austrian firm level data," European Economic Review, Elsevier, vol. 91(C), pages 57-71.
    14. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    15. Yasutomo Murasawa, 2013. "Measuring Inflation Expectations Using Interval-Coded Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(4), pages 602-623, August.
    16. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    17. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2015. "GARCH modeling of five popular commodities," Empirical Economics, Springer, vol. 48(4), pages 1691-1712, June.
    18. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    19. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    20. Victor Korolev & Alexander Zeifman, 2023. "Quasi-Exponentiated Normal Distributions: Mixture Representations and Asymmetrization," Mathematics, MDPI, vol. 11(17), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:72:y:2018:i:2:p:158-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.