IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i7d10.1007_s11269-019-02275-y.html
   My bibliography  Save this article

Assessing the Impact of Urban Development and On-Site Stormwater Detention on Regional Hydrology Using Monte Carlo Simulated Rainfall

Author

Listed:
  • Rodney Ronalds

    (Griffith University)

  • Hong Zhang

    (Griffith University
    Griffith University)

Abstract

Urban development is a contributor to increased peak runoff and adverse hydrologic effects in regional catchments. On-Site Stormwater Detention (OSD) is a common way to mitigate these problems, however it is well known that OSD can have the opposite effect when it is installed at inappropriate locations. Parameter uncertainty and the need for a probabilistic approach to hydrograph generation are also factors that add to concerns regarding our reliance on OSD for the protection of regional hydrology. This study contributes to awareness of these issues and a practical solution to the problem. A hydrologic model for Monte Carlo simulation of regional catchment hydrographs has been developed using interrelated modules based on previous studies. A sample of ten regional catchments has been modelled with three simulation scenarios: i) status quo, ii) a land parcel of varying sizes is urbanised at varying locations within the regional catchment, and iii) the urbanised land parcel includes OSD. The focus on the results has been the identification and analysis of two key parameters that influence the regional catchments’ peak runoff, being the size and location of the urbanised land parcel. A regression analysis of the model results has revealed recurring patterns that have been used to develop new equations for predicting the mean impact of urbanisation and OSD on regional catchment peak runoff. The study highlights the significance of rainfall pattern uncertainty and the importance of considering land parcel location in considering the need for OSD as part of urban land development projects.

Suggested Citation

  • Rodney Ronalds & Hong Zhang, 2019. "Assessing the Impact of Urban Development and On-Site Stormwater Detention on Regional Hydrology Using Monte Carlo Simulated Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2517-2536, May.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:7:d:10.1007_s11269-019-02275-y
    DOI: 10.1007/s11269-019-02275-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02275-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02275-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luca Palmeri & Michael Trepel, 2002. "A GIS-Based Score System for Siting and Sizing of Created or Restored Wetlands: Two Case Studies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(4), pages 307-328, August.
    2. Giovanni Ravazzani & Paride Gianoli & Stefania Meucci & Marco Mancini, 2014. "Assessing Downstream Impacts of Detention Basins in Urbanized River Basins Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1033-1044, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Lu & Xiaosheng Qin, 2019. "An Integrated Fuzzy Simulation-Optimization Model for Supporting Low Impact Development Design under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4351-4365, September.
    2. Stephen J. Birkinshaw & Vladimir Krivtsov, 2022. "Evaluating the Effect of the Location and Design of Retention Ponds on Flooding in a Peri-Urban River Catchment," Land, MDPI, vol. 11(8), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorena Peñacoba-Antona & Montserrat Gómez-Delgado & Abraham Esteve-Núñez, 2021. "Multi-Criteria Evaluation and Sensitivity Analysis for the Optimal Location of Constructed Wetlands (METland) at Oceanic and Mediterranean Areas," IJERPH, MDPI, vol. 18(10), pages 1-22, May.
    2. Punys, P. & Radzevičius, A. & Kvaraciejus, A. & Gasiūnas, V. & Šilinis, L., 2019. "A multi-criteria analysis for siting surface-flow constructed wetlands in tile-drained agricultural catchments: The case of Lithuania," Agricultural Water Management, Elsevier, vol. 213(C), pages 1036-1046.
    3. Guihua Lu & Jingjing Liu & Zhiyong Wu & Hai He & Huating Xu & Qingxia Lin, 2015. "Development of a Large-Scale Routing Model with Scale Independent by Considering the Damping Effect of Sub-Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5237-5253, November.
    4. Santiago Gaitan & Marie-claire ten Veldhuis & Nick Giesen, 2015. "Spatial Distribution of Flood Incidents Along Urban Overland Flow-Paths," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3387-3399, July.
    5. Giuseppe Del Giudice & Giacomo Rasulo & Daniele Siciliano & Roberta Padulano, 2014. "Combined Effects of Parallel and Series Detention Basins for Flood Peak Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3193-3205, August.
    6. Mohammed Salem & Wasef Al-Zayadneh & Abdul Cheruth, 2010. "Water Conservation and Management with Hydrophobic Encapsulation of Sand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2237-2246, August.
    7. Stephen J. Birkinshaw & Vladimir Krivtsov, 2022. "Evaluating the Effect of the Location and Design of Retention Ponds on Flooding in a Peri-Urban River Catchment," Land, MDPI, vol. 11(8), pages 1-17, August.
    8. Nadia Darwiche-Criado & Ricardo Sorando & Silvia G. Eismann & Francisco A. Comín, 2017. "Comparing Two Multi-Criteria Methods for Prioritizing Wetland Restoration and Creation Sites Based on Ecological, Biophysical and Socio-Economic Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1227-1241, March.
    9. David Moreno-Mateos & Ülo Mander & César Pedrocchi, 2010. "Optimal Location of Created and Restored Wetlands in Mediterranean Agricultural Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2485-2499, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:7:d:10.1007_s11269-019-02275-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.