IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1368-d894303.html
   My bibliography  Save this article

Evaluating the Effect of the Location and Design of Retention Ponds on Flooding in a Peri-Urban River Catchment

Author

Listed:
  • Stephen J. Birkinshaw

    (School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK)

  • Vladimir Krivtsov

    (Water Systems Integration Group, Imperial College London, London SW7 2BX, UK
    Royal Botanic Garden Edinburgh, Edinburgh EH3 5NZ, UK)

Abstract

In order to reduce the flooding risk in urban and peri-urban river catchments, retention ponds or wet detention ponds are often used. However, there has been little work that uses distributed hydrological modeling to consider their optimum location and design in order to reduce the flood risk in a river catchment. This work considers two existing and two potential ponds in the 22.8 km 2 Braid Burn catchment, Edinburgh, Scotland. Using the Shetran physically based distributed hydrological model, the effect of these ponds on the river discharges for eight measured rainfall events and two design rainfall events is considered. The results show the larger Blackford pond is best at reducing the peak discharge at the catchment outlet. The other three ponds are designed to be almost the same. The potential pond in the upper part of the catchment reduces the peak discharge at the outlet; the pond in the middle at Oxgangs makes little difference to the peak discharge, while the potential pond in the lower part of the catchment increases the peak discharge at the outlet. These results show that when considering flood risk, the location of a retention pond within a river catchment is important, and it can make the flooding worse at the outlet if it is located in the wrong location. This work suggests the pond should be located in the upper part of the catchment, although the ideal location will depend on the catchment’s shape and lag time.

Suggested Citation

  • Stephen J. Birkinshaw & Vladimir Krivtsov, 2022. "Evaluating the Effect of the Location and Design of Retention Ponds on Flooding in a Peri-Urban River Catchment," Land, MDPI, vol. 11(8), pages 1-17, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1368-:d:894303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodney Ronalds & Hong Zhang, 2019. "Assessing the Impact of Urban Development and On-Site Stormwater Detention on Regional Hydrology Using Monte Carlo Simulated Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2517-2536, May.
    2. J.B. Ellis, 2013. "Sustainable surface water management and green infrastructure in UK urban catchment planning," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(1), pages 24-41, January.
    3. Shanshan Hu & Yunyun Fan & Tao Zhang, 2020. "Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing," Land, MDPI, vol. 9(1), pages 1-15, January.
    4. Giovanni Ravazzani & Paride Gianoli & Stefania Meucci & Marco Mancini, 2014. "Assessing Downstream Impacts of Detention Basins in Urbanized River Basins Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1033-1044, March.
    5. Karen Goff & Randall Gentry, 2006. "The Influence of Watershed and Development Characteristics on the Cumulative Impacts of Stormwater Detention Ponds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 829-860, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Del Giudice & Giacomo Rasulo & Daniele Siciliano & Roberta Padulano, 2014. "Combined Effects of Parallel and Series Detention Basins for Flood Peak Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3193-3205, August.
    2. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    3. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    4. Pappalardo, Viviana & La Rosa, Daniele & Campisano, Alberto & La Greca, Paolo, 2017. "The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study," Ecosystem Services, Elsevier, vol. 26(PB), pages 345-354.
    5. Giovanni Ravazzani & Paride Gianoli & Stefania Meucci & Marco Mancini, 2014. "Assessing Downstream Impacts of Detention Basins in Urbanized River Basins Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1033-1044, March.
    6. Suphicha Muangsri & Wendy McWilliam & Tim Davies & Gillian Lawson, 2022. "Effectiveness of Strategically Located Green Stormwater Infrastructure Networks for Adaptive Flood Mitigation in a Context of Climate Change," Land, MDPI, vol. 11(11), pages 1-22, November.
    7. Erle Kristvik & Birgitte Gisvold Johannessen & Tone Merete Muthanna, 2019. "Temporal Downscaling of IDF Curves Applied to Future Performance of Local Stormwater Measures," Sustainability, MDPI, vol. 11(5), pages 1-24, February.
    8. Alessio Russo & Wing Tung Chan & Giuseppe T. Cirella, 2021. "Estimating Air Pollution Removal and Monetary Value for Urban Green Infrastructure Strategies Using Web-Based Applications," Land, MDPI, vol. 10(8), pages 1-17, July.
    9. Katarzyna Rędzińska & Monika Piotrkowska, 2020. "Urban Planning and Design for Building Neighborhood Resilience to Climate Change," Land, MDPI, vol. 9(10), pages 1-19, October.
    10. Zhiwei Wan & Hongqi Wu, 2022. "Evolution of Ecological Patterns of Poyang Lake Wetland Landscape over the Last One Hundred Years Based on Historical Topographic Maps and Landsat Images," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    11. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang, 2022. "Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China," Land, MDPI, vol. 11(8), pages 1-24, July.
    12. Anna Porębska & Krzysztof Muszyński & Izabela Godyń & Kinga Racoń-Leja, 2023. "City and Water Risk: Accumulated Runoff Mapping Analysis as a Tool for Sustainable Land Use Planning," Land, MDPI, vol. 12(7), pages 1-21, July.
    13. Pietro Piana & Francesco Faccini & Fabio Luino & Guido Paliaga & Alessandro Sacchini & Charles Watkins, 2019. "Geomorphological Landscape Research and Flood Management in a Heavily Modified Tyrrhenian Catchment," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    14. Erica Honeck & Atte Moilanen & Benjamin Guinaudeau & Nicolas Wyler & Martin A. Schlaepfer & Pascal Martin & Arthur Sanguet & Loreto Urbina & Bertrand von Arx & Joëlle Massy & Claude Fischer & Anthony , 2020. "Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    15. Wei Lu & Xiaosheng Qin, 2019. "An Integrated Fuzzy Simulation-Optimization Model for Supporting Low Impact Development Design under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4351-4365, September.
    16. Rosanna Bonasia & Lorenzo Borselli & Paolo Madonia, 2023. "Analysis of Flow and Land Use on the Hydraulic Structure of Southeast Mexico City: Implications on Flood and Runoff," Land, MDPI, vol. 12(6), pages 1-21, May.
    17. Rodney Ronalds & Hong Zhang, 2019. "Assessing the Impact of Urban Development and On-Site Stormwater Detention on Regional Hydrology Using Monte Carlo Simulated Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2517-2536, May.
    18. Samith Madusanka & Chethika Abenayake & Amila Jayasinghe & Chaminda Perera, 2022. "A Decision-Making Tool for Urban Planners: A Framework to Model the Interdependency among Land Use, Accessibility, Density, and Surface Runoff in Urban Areas," Sustainability, MDPI, vol. 14(1), pages 1-19, January.
    19. Liquete, Camino & Udias, Angel & Conte, Giulio & Grizzetti, Bruna & Masi, Fabio, 2016. "Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits," Ecosystem Services, Elsevier, vol. 22(PB), pages 392-401.
    20. Vidya Anderson & William A. Gough, 2022. "A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications," Land, MDPI, vol. 11(7), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1368-:d:894303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.