IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i10d10.1007_s11269-016-1362-2.html
   My bibliography  Save this article

Impact of El Niño and Climate Change on Rainwater Harvesting in a Caribbean State

Author

Listed:
  • Olanike Aladenola

    (The University of the West Indies)

  • Adrian Cashman

    (The University of the West Indies)

  • Douglas Brown

    (The University of the West Indies)

Abstract

The water situation of the Pusey district in St Catherine parish of Jamaica is acute because of the district’s hilly terrains which made connections to centralised public water supply difficult. Residents depend on rainwater harvesting (RWH) systems to meet potable needs, like many other catchments across Jamaica. Rainwater collecting practices and water use habits of the residents were surveyed and the present and future RWH capacity was evaluated using the available 18 years (1996 to 2013) rainfall data and downscaled PRECIS model A2 and B2 climate change scenarios. In addition, the effect of El Niño episodes on rainfall patterns was evaluated. The coefficients of variations for annual rainfall were found to be higher for the El Niño years than in normal years. In two of the El Niño years (1997 and 2009), rainwater harvesting capacity is negatively impacted as rainfall annual total is (42 % and 34 %) lesser than the average annual rainfall. The ability of RWH to meet potable needs in 2030s and 2050s will be reduced based on predicted shorter intense showers and frequent dry spells. A storage tank of 2.5 to 4.0 m3 per household (4 persons) is proposed to meet water demand during the maximum consecutive dry days, and January and February water shortage periods. Design of efficient RWH systems and provision of government subsidy on storage tanks will enable the residents to capture more rainwater to meet their daily domestic needs.

Suggested Citation

  • Olanike Aladenola & Adrian Cashman & Douglas Brown, 2016. "Impact of El Niño and Climate Change on Rainwater Harvesting in a Caribbean State," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3459-3473, August.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:10:d:10.1007_s11269-016-1362-2
    DOI: 10.1007/s11269-016-1362-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1362-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1362-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olanike Aladenola & Omotayo Adeboye, 2010. "Assessing the Potential for Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2129-2137, August.
    2. Vieira, Abel S. & Beal, Cara D. & Ghisi, Enedir & Stewart, Rodney A., 2014. "Energy intensity of rainwater harvesting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 225-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueer Jing & Shouhong Zhang & Jianjun Zhang & Yujie Wang & Yunqi Wang & Tongjia Yue, 2018. "Analysis and Modelling of Stormwater Volume Control Performance of Rainwater Harvesting Systems in Four Climatic Zones of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2649-2664, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiguang Chen & Hongwei Sun & Qiuli Chen & Song Liu & Xuebin Chen, 2023. "An Innovative Approach to Predicting the Financial Prospects of a Rainwater Harvesting System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3169-3185, June.
    2. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    3. Q. Tan & G. Huang & Y. Cai, 2013. "Multi-Source Multi-Sector Sustainable Water Supply Under Multiple Uncertainties: An Inexact Fuzzy-Stochastic Quadratic Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 451-473, January.
    4. Kwangsik Jung & Taeseop Lee & Byeong Choi & Seungkwan Hong, 2015. "Rainwater Harvesting System for Contiunous Water Supply to the Regions with High Seasonal Rainfall Variations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 961-972, February.
    5. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Enedir Ghisi & Pedro Schondermark, 2013. "Investment Feasibility Analysis of Rainwater Use in Residences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2555-2576, May.
    7. Lúcio Proença & Enedir Ghisi, 2013. "Assessment of Potable Water Savings in Office Buildings Considering Embodied Energy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 581-599, January.
    8. Bao, Bin & Chen, Wen & Wang, Quan, 2019. "A piezoelectric hydro-energy harvester featuring a special container structure," Energy, Elsevier, vol. 189(C).
    9. Gabriel Yoshino & Lindemberg Fernandes & Júnior Ishihara & Adnilson Silva, 2014. "Use of rainwater for non-potable purposes in the Amazon," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 431-442, April.
    10. Campisano, Alberto & Modica, Carlo, 2012. "Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 9-16.
    11. Dagnachew Adugna & Marina Bergen Jensen & Brook Lemma & Geremew Sahilu Gebrie, 2018. "Assessing the Potential for Rooftop Rainwater Harvesting from Large Public Institutions," IJERPH, MDPI, vol. 15(2), pages 1-11, February.
    12. Monzur Alam Imteaz & Vassiliki Boulomytis, 2022. "Improvement of Rainwater Harvesting Analysis Through an Hourly Timestep Model in Comparison with a Daily Timestep Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2611-2622, June.
    13. Molinos-Senante, María & Sala-Garrido, Ramón, 2017. "Energy intensity of treating drinking water: Understanding the influence of factors," Applied Energy, Elsevier, vol. 202(C), pages 275-281.
    14. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    15. P. Londra & A. Theocharis & E. Baltas & V. Tsihrintzis, 2015. "Optimal Sizing of Rainwater Harvesting Tanks for Domestic Use in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4357-4377, September.
    16. Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Assemany, Paula Peixoto & Silva, Marcos Dornelas Freitas Machado e & Moreira Neto, Ronan Fernandes & Santiago, Aníbal da Fonseca & de Souza, Maur, 2013. "Sustainable airport environments: A review of water conservation practices in airports," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 27-36.
    17. Sahin, Oz & Stewart, Rodney A. & Giurco, Damien & Porter, Michael G., 2017. "Renewable hydropower generation as a co-benefit of balanced urban water portfolio management and flood risk mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1076-1087.
    18. Md. Islam & F. Chou & M. Kabir & C. Liaw, 2010. "Rainwater: A Potential Alternative Source for Scarce Safe Drinking and Arsenic Contaminated Water in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3987-4008, November.
    19. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    20. Siti Nazahiyah Rahmat & Aziman Madun & Azra Munirah Mat Daud & Mohammad Sukri Mustapa & Mohammad Sukri Mustapa & Mohammad Mohammad Erwan Zaki Mat Radzi & Mohd Zainizan Sahdan & Amir Hashim Mohd Kassim, 2021. "Integrated Rainwater Harvesting (Rwh) And Groundwater System For Domestic Water Supply," INWASCON Technology Magazine(i-TECH MAG), Zibeline International Publishing, vol. 3, pages 27-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:10:d:10.1007_s11269-016-1362-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.