IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i9p2081-2107.html
   My bibliography  Save this article

Water Balance Study and Irrigation Strategies for Sustainable Management of a Tropical Ethiopian Lake: A Case Study of Lake Alemaya

Author

Listed:
  • Shimelis Setegn
  • V. Chowdary
  • B. Mal
  • Fikadu Yohannes
  • Yasuyuki Kono

Abstract

Lake Alemaya in the Ethiopian Highlands has historically provided the surrounding area with water for domestic use, irrigation, and livestock and has served as a local fishery tank. Increasing irrigation and domestic water use, change in the local climate and changes in the surrounding land cover are believed to be the causes of Lake Alemaya’s demise. Expansion of major irrigated crops in particular chat (Catha Edulis), potato and vegetables and non-judicious use of irrigation water in the Lake Alemaya watershed led to presumption that irrigation is partly responsible for the withdrawal of large quantity of water from the lake. Thus, water balance study of Lake Alemaya was carried out under presumed scenarios in order to study the possible trends and fluctuations of the lake water level in response to proposed scenarios. Further, it is essential to study the irrigation performance for developing optimal irrigation schedules in the study area to make the best use of available water for long term sustainability of the water resources of Lake Alemaya. It was identified that expansion of the irrigated area in general and chat cultivation in particular in the study area have been the key to sustainable management of lake water, hence its expansion during the past 37 years (1965–2002) was studied through interpretation of satellite data. Subsequently, performance evaluation of the small-scale irrigation practices for major irrigated crops was carried out. Optimal irrigation schedules for different crop seasons were also developed for these irrigated crops using CROPWAT software. It was found that chat area increased from 190 ha in 1996 to nearly 330 ha in 2002. Further, it was observed that 43% surface area of the lake has reduced within a span of 37 years. Overall, maximum irrigation intensity of chat, potato and vegetables is observed during the first irrigation season of the crop calendar. Particularly, in case of chat, irrigation performance indicators such as Relative Water Supply (RWS), Relative Irrigation Supply (RIS), Depleted Fraction (DF) and Overall Consumed Ratio (OCR) values indicated poor performance of irrigation practices. From the analysis, it was found that the application of a fixed irrigation depth and fixed irrigation interval combinations of (25 mm—25 day), (20 mm—20 day), or (20 mm—25 day) are recommended for chat in the study area. Optimal irrigation schedules were decided on the basis of combination of irrigation interval and depth that results in low loss of irrigation water with reasonable yield reduction. Thus, determination of appropriate water management strategy can ensure proper utilization of the available water resources and improve the water application efficiency of the small-scale irrigation practices around Lake Alemaya, Ethiopia. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Shimelis Setegn & V. Chowdary & B. Mal & Fikadu Yohannes & Yasuyuki Kono, 2011. "Water Balance Study and Irrigation Strategies for Sustainable Management of a Tropical Ethiopian Lake: A Case Study of Lake Alemaya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2081-2107, July.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:9:p:2081-2107
    DOI: 10.1007/s11269-011-9797-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9797-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9797-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Abdrabbo Abou Kheira, 2009. "Comparative Assessment of New Design Criteria for Irrigation Improvement in Egypt," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2317-2342, September.
    3. Foroud, N. & Hobbs, E. H. & Riewe, R. & Entz, T., 1992. "Field verification of a microcomputer irrigation model," Agricultural Water Management, Elsevier, vol. 21(3), pages 215-234, August.
    4. Chowdary, V.M. & Chandran, R. Vinu & Neeti, N. & Bothale, R.V. & Srivastava, Y.K. & Ingle, P. & Ramakrishnan, D. & Dutta, D. & Jeyaram, A. & Sharma, J.R. & Singh, Ravindra, 2008. "Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS," Agricultural Water Management, Elsevier, vol. 95(7), pages 754-766, July.
    5. Chowdary, V.M. & Rao, N.H. & Sarma, P.B.S., 2005. "Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects," Agricultural Water Management, Elsevier, vol. 75(3), pages 194-225, July.
    6. Maite Aldaya & Pedro Martínez-Santos & M. Llamas, 2010. "Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 941-958, March.
    7. Chowdary, V. M. & Rao, N. H. & Sarma, P. B. S., 2003. "GIS-based decision support system for groundwater assessment in large irrigation project areas," Agricultural Water Management, Elsevier, vol. 62(3), pages 229-252, October.
    8. Mutlu Ozdogan & Curtis Woodcock & Guido Salvucci & Hüseyin Demir, 2006. "Changes in Summer Irrigated Crop Area and Water Use in Southeastern Turkey from 1993 to 2002: Implications for Current and Future Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(3), pages 467-488, June.
    9. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    10. D. Kalivas & V. Kollias & G. Karantounias, 2003. "A GIS for the Assessment of the Spatio-Temporal Changes of the Kotychi Lagoon, Western Peloponnese, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(1), pages 19-36, February.
    11. Zerihun, Dawit & Wang, Zhi & Rimal, Suman & Feyen, Jan & Mohan Reddy, J., 1997. "Analysis of surface irrigation performance terms and indices," Agricultural Water Management, Elsevier, vol. 34(1), pages 25-46, July.
    12. Dirk Verschuren & Kathleen R. Laird & Brian F. Cumming, 2000. "Rainfall and drought in equatorial east Africa during the past 1,100 years," Nature, Nature, vol. 403(6768), pages 410-414, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adela, F.A. & Aurbacher, J., 2018. "Access to irrigation water-poverty nexus: Application of an Endogenous Switching Regression in Ethiopia," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277521, International Association of Agricultural Economists.
    2. Gezahegn Weldu Woldemariam & Arus Edo Harka, 2020. "Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia," Land, MDPI, vol. 9(4), pages 1-25, April.
    3. Fitsum Assefa Adela & Joachim Aurbacher & Gumataw Kifle Abebe, 2019. "Small-scale irrigation scheme governance - poverty nexus: evidence from Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(4), pages 897-913, August.
    4. Mohammad Dastorani & Samaneh Poormohammadi, 2012. "Evaluation of Water Balance in a Mountainous Upland Catchment Using SEBAL Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2069-2080, May.
    5. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    6. Merchán, D. & Causapé, J. & Abrahão, R. & García-Garizábal, I., 2015. "Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. I: Water balances and irrigation performance," Agricultural Water Management, Elsevier, vol. 158(C), pages 277-287.
    7. Daniela D’Agostino & Alessandra Scardigno & Nicola Lamaddalena & Daniel Chami, 2014. "Sensitivity Analysis of Coupled Hydro-Economic Models: Quantifying Climate Change Uncertainty for Decision-Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4303-4318, September.
    8. Shimelis Beyene & Teshome H. Regassa & Belaineh Legesse & Martha Mamo & Tsegaye Tadesse, 2018. "Empowerment and Tech Adoption: Introducing the Treadle Pump Triggers Farmers’ Innovation in Eastern Ethiopia," Sustainability, MDPI, vol. 10(9), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    2. Lee, Teang Shui & Haque, M. Aminul & Najim, M.M.M., 2005. "Scheduling the cropping calendar in wet-seeded rice schemes in Malaysia," Agricultural Water Management, Elsevier, vol. 71(1), pages 71-84, January.
    3. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    4. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    6. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, K. V. G. K., 2008. "The lower Krishna Basin trajectory: relationships between basin development and downstream environmental degradation," IWMI Research Reports H041463, International Water Management Institute.
    7. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    8. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    9. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    10. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    11. Sandhu, Rupinder & Irmak, Suat, 2022. "Effects of subsurface drip-irrigated soybean seeding rates on grain yield, evapotranspiration and water productivity under limited and full irrigation and rainfed conditions," Agricultural Water Management, Elsevier, vol. 267(C).
    12. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    13. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    14. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    15. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    16. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    17. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    18. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    19. Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
    20. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:9:p:2081-2107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.