IDEAS home Printed from https://ideas.repec.org/a/spr/trosos/v15y2021i2d10.1007_s12626-021-00094-5.html
   My bibliography  Save this article

Explaining Dynamic Changes in Various Asset’s Relationships in Financial Markets

Author

Listed:
  • Makoto Naraoka

    (The University of Tokyo)

  • Teruaki Hayashi

    (The University of Tokyo)

  • Takaaki Yoshino

    (Nissay Asset Management Corp.)

  • Toshiaki Sugie

    (Nissay Asset Management Corp.)

  • Kota Takano

    (Nissay Asset Management Corp.)

  • Yukio Ohsawa

    (The University of Tokyo)

Abstract

We study the method for detecting relationship changes in financial markets and providing human-interpretable network visualization to support the decision-making of fund managers dealing with multi-assets. First, we construct co-occurrence networks with each asset as a node and a pair with a strong relationship in price change as an edge at each time step. Second, we calculate Graph-Based Entropy to represent the variety of price changes based on the network. Third, we apply the Differential Network to finance, which is traditionally used in the field of bioinformatics. By the method described above, we can visualize when and what kind of changes are occurring in the financial market, and which assets play a central role in changes in financial markets. Experiments with multi-asset time-series data showed results that were well fit with actual events while maintaining high interpretability. It is suggested that this approach is useful for fund managers to use as a new option for decision-making.

Suggested Citation

  • Makoto Naraoka & Teruaki Hayashi & Takaaki Yoshino & Toshiaki Sugie & Kota Takano & Yukio Ohsawa, 2021. "Explaining Dynamic Changes in Various Asset’s Relationships in Financial Markets," The Review of Socionetwork Strategies, Springer, vol. 15(2), pages 597-611, November.
  • Handle: RePEc:spr:trosos:v:15:y:2021:i:2:d:10.1007_s12626-021-00094-5
    DOI: 10.1007/s12626-021-00094-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12626-021-00094-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12626-021-00094-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sunil Kumar & Nivedita Deo, 2012. "Correlation, Network and Multifractal Analysis of Global Financial Indices," Papers 1202.0409, arXiv.org.
    2. P. Giudici & A. Spelta, 2016. "Graphical Network Models for International Financial Flows," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 128-138, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    2. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    3. Daniel Felix Ahelegbey & Paolo Giudici, 2020. "Market Risk, Connectedness and Turbulence: A Comparison of 21st Century Financial Crises," DEM Working Papers Series 188, University of Pavia, Department of Economics and Management.
    4. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    5. Caraiani, Petre, 2017. "The predictive power of local properties of financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 79-90.
    6. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9.
    7. Ahelegbey, Daniel Felix & Cerchiello, Paola & Scaramozzino, Roberta, 2022. "Network based evidence of the financial impact of Covid-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 81(C).
    8. Frank Emmert-Streib & Aliyu Musa & Kestutis Baltakys & Juho Kanniainen & Shailesh Tripathi & Olli Yli-Harja & Herbert Jodlbauer & Matthias Dehmer, 2017. "Computational Analysis of the structural properties of Economic and Financial Networks," Papers 1710.04455, arXiv.org.
    9. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2020. "Community structure in the World Trade Network based on communicability distances," Papers 2001.06356, arXiv.org, revised Jul 2020.
    10. Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
    11. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    12. Nobi, Ashadun & Alam, Shafiqul & Lee, Jae Woo, 2017. "Dynamic of consumer groups and response of commodity markets by principal component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 337-344.
    13. Busu, Cristian & Busu, Mihail, 2019. "Modeling the predictive power of the singular value decomposition-based entropy. Empirical evidence from the Dow Jones Global Titans 50 Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    14. Araújo, Tanya & Faustino, Rui, 2017. "The topology of inter-industry relations from the Portuguese national accounts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 236-248.
    15. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets around the Global Financial Crisis," Papers 1806.04363, arXiv.org.
    16. Chen, Ning & Li, Shaofang & Lu, Shuai, 2023. "The extreme risk connectedness of the global financial system: G7 and BRICS evidence," Journal of Multinational Financial Management, Elsevier, vol. 69(C).
    17. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    18. Nobi, Ashadun & Lee, Jae Woo, 2016. "State and group dynamics of world stock market by principal component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 85-94.
    19. Paolo Giudici & Laura Parisi, 2019. "Bail-In or Bail-Out? Correlation Networks to Measure the Systemic Implications of Bank Resolution," Risks, MDPI, vol. 7(1), pages 1-25, January.
    20. Giada Adelfio & Arianna Agosto & Marcello Chiodi & Paolo Giudici, 2021. "Financial contagion through space-time point processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 665-688, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:trosos:v:15:y:2021:i:2:d:10.1007_s12626-021-00094-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.