IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v2y2021i3d10.1007_s43069-021-00073-0.html
   My bibliography  Save this article

Robust Arbitrage Conditions for Financial Markets

Author

Listed:
  • Derek Singh

    (University of Minnesota)

  • Shuzhong Zhang

    (University of Minnesota)

Abstract

This paper investigated arbitrage properties of financial markets under distributional uncertainty using Wasserstein distance as the ambiguity measure. The weak and strong forms of the classical arbitrage conditions are considered. A relaxation is introduced for which we coin the term statistical arbitrage. The simpler dual formulations of the robust arbitrage conditions are derived. A number of interesting questions arise in this context. One question is: can we compute a critical Wasserstein radius beyond which an arbitrage opportunity exists? What is the shape of the curve mapping the degree of ambiguity to statistical arbitrage levels? Other questions arise regarding the structure of best (worst) case distributions and optimal portfolios. Toward answering these questions, some theory is developed and computational experiments are conducted for specific problem instances. Finally, some open questions and suggestions for future research are discussed.

Suggested Citation

  • Derek Singh & Shuzhong Zhang, 2021. "Robust Arbitrage Conditions for Financial Markets," SN Operations Research Forum, Springer, vol. 2(3), pages 1-52, September.
  • Handle: RePEc:spr:snopef:v:2:y:2021:i:3:d:10.1007_s43069-021-00073-0
    DOI: 10.1007/s43069-021-00073-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-021-00073-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-021-00073-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziping Zhao & Rui Zhou & Zhongju Wang & Daniel P. Palomar, 2018. "Optimal Portfolio Design for Statistical Arbitrage in Finance," Papers 1803.02974, arXiv.org.
    2. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    3. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    4. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem For Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 963-987, October.
    5. LeRoy,Stephen F. & Werner,Jan, 2014. "Principles of Financial Economics," Cambridge Books, Cambridge University Press, number 9781107024120.
    6. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem for Continuous Processes," Post-Print hal-01076062, HAL.
    7. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    8. Ostrovski, Vladimir, 2013. "Stability of no-arbitrage property under model uncertainty," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 89-92.
    9. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    10. Christopher Krauss, 2017. "Statistical Arbitrage Pairs Trading Strategies: Review And Outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 31(2), pages 513-545, April.
    11. Focardi, Sergio M. & Fabozzi, Frank J. & Mitov, Ivan K., 2016. "A new approach to statistical arbitrage: Strategies based on dynamic factor models of prices and their performance," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 134-155.
    12. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    13. Eva Lütkebohmert & Julian Sester, 2021. "Robust statistical arbitrage strategies," Quantitative Finance, Taylor & Francis Journals, vol. 21(3), pages 379-402, March.
    14. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derek Singh & Shuzhong Zhang, 2020. "Robust Arbitrage Conditions for Financial Markets," Papers 2004.09432, arXiv.org.
    2. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.
    3. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    4. Matteo Burzoni & Frank Riedel & H. Mete Soner, 2021. "Viability and Arbitrage Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 89(3), pages 1207-1234, May.
    5. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    6. Julian Holzermann, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Papers 2003.04606, arXiv.org, revised Nov 2021.
    7. Patrick Cheridito & Matti Kiiski & David J. Promel & H. Mete Soner, 2019. "Martingale optimal transport duality," Papers 1904.04644, arXiv.org, revised Nov 2020.
    8. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    9. Huy N. Chau & Miklos Rasonyi, 2018. "Robust utility maximization in markets with transaction costs," Papers 1803.04213, arXiv.org, revised Dec 2018.
    10. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    11. Matteo Burzoni & Marco Maggis, 2019. "Arbitrage-free modeling under Knightian Uncertainty," Papers 1909.04602, arXiv.org, revised Apr 2020.
    12. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    13. Huy N. Chau, 2020. "On robust fundamental theorems of asset pricing in discrete time," Papers 2007.02553, arXiv.org, revised Apr 2024.
    14. Huy N. Chau & Masaaki Fukasawa & Miklos Rasonyi, 2021. "Super-replication with transaction costs under model uncertainty for continuous processes," Papers 2102.02298, arXiv.org.
    15. Erhan Bayraktar & Gu Wang, 2018. "Quantile Hedging in a semi-static market with model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 197-227, April.
    16. Huy N. Chau & Miklós Rásonyi, 2019. "Robust utility maximisation in markets with transaction costs," Finance and Stochastics, Springer, vol. 23(3), pages 677-696, July.
    17. Hölzermann, Julian, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Center for Mathematical Economics Working Papers 633, Center for Mathematical Economics, Bielefeld University.
    18. Ariel Neufeld & Julian Sester & Daiying Yin, 2022. "Detecting data-driven robust statistical arbitrage strategies with deep neural networks," Papers 2203.03179, arXiv.org, revised Feb 2024.
    19. Blanchard, Romain & Carassus, Laurence, 2020. "No-arbitrage with multiple-priors in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6657-6688.
    20. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2020. "Utility Maximization with Proportional Transaction Costs Under Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1210-1236, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:2:y:2021:i:3:d:10.1007_s43069-021-00073-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.