IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v25y2022i2d10.1007_s11203-021-09257-1.html
   My bibliography  Save this article

Likelihood theory for the graph Ornstein-Uhlenbeck process

Author

Listed:
  • Valentin Courgeau

    (Imperial College London)

  • Almut E. D. Veraart

    (Imperial College London)

Abstract

We consider the problem of modelling restricted interactions between continuously-observed time series as given by a known static graph (or network) structure. For this purpose, we define a parametric multivariate Graph Ornstein-Uhlenbeck (GrOU) process driven by a general Lévy process to study the momentum and network effects amongst nodes, effects that quantify the impact of a node on itself and that of its neighbours, respectively. We derive the maximum likelihood estimators (MLEs) and their usual properties (existence, uniqueness and efficiency) along with their asymptotic normality and consistency. Additionally, an Adaptive Lasso approach, or a penalised likelihood scheme, infers both the graph structure along with the GrOU parameters concurrently and is shown to satisfy similar properties. Finally, we show that the asymptotic theory extends to the case when stochastic volatility modulation of the driving Lévy process is considered.

Suggested Citation

  • Valentin Courgeau & Almut E. D. Veraart, 2022. "Likelihood theory for the graph Ornstein-Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 227-260, July.
  • Handle: RePEc:spr:sistpr:v:25:y:2022:i:2:d:10.1007_s11203-021-09257-1
    DOI: 10.1007/s11203-021-09257-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-021-09257-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-021-09257-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Kevei, Péter, 2018. "Ergodic properties of generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 156-181.
    3. S. Endres & J. Stübinger, 2019. "Optimal trading strategies for Lévy-driven Ornstein–Uhlenbeck processes," Applied Economics, Taylor & Francis Journals, vol. 51(29), pages 3153-3169, June.
    4. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    5. Pap, Gyula & van Zuijlen, Martien C. A., 1996. "Parameter Estimation with Exact Distribution for Multidimensional Ornstein-Uhlenbeck Processes," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 153-165, November.
    6. Gaïffas, Stéphane & Matulewicz, Gustaw, 2019. "Sparse inference of the drift of a high-dimensional Ornstein–Uhlenbeck process," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 1-20.
    7. Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Okhrin, Yarema, 2019. "Tail event driven networks of SIFIs," Journal of Econometrics, Elsevier, vol. 208(1), pages 282-298.
    8. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
    9. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2012. "Stochastic Volatility of Volatility and Variance Risk Premia," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 1-46, December.
    10. Valentin Courgeau & Almut E. D. Veraart, 2020. "High-frequency Estimation of the L\'evy-driven Graph Ornstein-Uhlenbeck process," Papers 2008.10930, arXiv.org, revised Jul 2022.
    11. Yamazato, Makoto, 1983. "Absolute continuity of operator-self-decomposable distributions on Rd," Journal of Multivariate Analysis, Elsevier, vol. 13(4), pages 550-560, December.
    12. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    13. Jan Rosiński & Tomasz Żak, 1997. "The Equivalence of Ergodicity and Weak Mixing for Infinitely Divisible Processes," Journal of Theoretical Probability, Springer, vol. 10(1), pages 73-86, January.
    14. Masuda, Hiroki, 2007. "Ergodicity and exponential [beta]-mixing bounds for multidimensional diffusions with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 35-56, January.
    15. Sato, Ken-iti & Yamazato, Makoto, 1984. "Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type," Stochastic Processes and their Applications, Elsevier, vol. 17(1), pages 73-100, May.
    16. Alexander Gushchin & Ilya Pavlyukevich & Marian Ritsch, 2020. "Drift estimation for a Lévy-driven Ornstein–Uhlenbeck process with heavy tails," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 553-570, October.
    17. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    18. Zhu, Xuening & Huang, Danyang & Pan, Rui & Wang, Hansheng, 2020. "Multivariate spatial autoregressive model for large scale social networks," Journal of Econometrics, Elsevier, vol. 215(2), pages 591-606.
    19. Fasen, Vicky, 2013. "Statistical estimation of multivariate Ornstein–Uhlenbeck processes and applications to co-integration," Journal of Econometrics, Elsevier, vol. 172(2), pages 325-337.
    20. Christian Brownlees & Eulalia Nualart & Yucheng Sun, 2020. "On the estimation of integrated volatility in the presence of jumps and microstructure noise," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 991-1013, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin W. Lu, 2022. "Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 365-396, July.
    2. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    3. A. Aghamohammadi & S. Mohammadi, 2017. "Bayesian analysis of penalized quantile regression for longitudinal data," Statistical Papers, Springer, vol. 58(4), pages 1035-1053, December.
    4. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2014. "Volatility activity: Specification and estimation," Journal of Econometrics, Elsevier, vol. 178(P1), pages 180-193.
    5. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
    6. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    7. Dong, Ruipeng & Li, Daoji & Zheng, Zemin, 2021. "Parallel integrative learning for large-scale multi-response regression with incomplete outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    8. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    9. Laurent, Sébastien & Shi, Shuping, 2020. "Volatility estimation and jump detection for drift–diffusion processes," Journal of Econometrics, Elsevier, vol. 217(2), pages 259-290.
    10. Liao, Yin & Pan, Zheyao, 2022. "Extreme risk connectedness among global major financial institutions: Links to globalization and emerging market fear," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    11. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    12. Ren, Yunwen & Zhang, Xinsheng, 2010. "Subset selection for vector autoregressive processes via adaptive Lasso," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1705-1712, December.
    13. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    14. Yu Chen & Jie Hu & Weiping Zhang, 2020. "Too Connected to Fail? Evidence from a Chinese Financial Risk Spillover Network," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(6), pages 78-100, November.
    15. Jakobsen, Nina Munkholt & Sørensen, Michael, 2019. "Estimating functions for jump–diffusions," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3282-3318.
    16. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    17. Bercu, Bernard & Proïa, Frédéric & Savy, Nicolas, 2014. "On Ornstein–Uhlenbeck driven by Ornstein–Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 36-44.
    18. Zachary F. Fisher & Younghoon Kim & Barbara L. Fredrickson & Vladas Pipiras, 2022. "Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 1-29, June.
    19. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    20. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:25:y:2022:i:2:d:10.1007_s11203-021-09257-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.