IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v83y2010i1d10.1007_s11192-009-0051-9.html
   My bibliography  Save this article

Emerging research fronts in science and technology: patterns of new knowledge development

Author

Listed:
  • S. Phineas Upham

    (University of Pennsylvania)

  • Henry Small

    (Thomson Reuters)

Abstract

Research fronts represent the most dynamic areas of science and technology and the areas that attract the most scientific interest. We construct a methodology to identify these fronts, and we use quantitative and qualitative methodology to analyze and describe them. Our methodology is able to identify these fronts as they form—with potential use by firms, venture capitalists, researchers, and governments looking to identify emerging high-impact technologies. We also examine how science and technology absorbs the knowledge developed in these fronts and find that fronts which maximize impact have very different characteristics than fronts which maximize growth, with consequences for the way science develops over time.

Suggested Citation

  • S. Phineas Upham & Henry Small, 2010. "Emerging research fronts in science and technology: patterns of new knowledge development," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 15-38, April.
  • Handle: RePEc:spr:scient:v:83:y:2010:i:1:d:10.1007_s11192-009-0051-9
    DOI: 10.1007/s11192-009-0051-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-009-0051-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-009-0051-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    2. Robert R. Braam & Henk F. Moed & Anthony F. J. van Raan, 1991. "Mapping of science by combined co‐citation and word analysis. I. Structural aspects," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 42(4), pages 233-251, May.
    3. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    4. Henry Small, 2003. "Paradigms, citations, and maps of science: A personal history," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 394-399, March.
    5. Howard D. White, 2003. "Pathfinder networks and author cocitation analysis: A remapping of paradigmatic information scientists," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 423-434, March.
    6. Philip H. Birnbaum, 1981. "Contingencies for Interdisciplinary Research: Matching Research Questions with Research Organizations," Management Science, INFORMS, vol. 27(11), pages 1279-1293, November.
    7. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    8. Henry Small, 2004. "Why authors think their papers are highly cited," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(3), pages 305-316, August.
    9. Kerstin Cuhls, 2003. "From forecasting to foresight processes-new participative foresight activities in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(2-3), pages 93-111.
    10. Eugene Garfield & A. I. Pudovkin & V. S. Istomin, 2003. "Why do we need algorithmic historiography?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 400-412, March.
    11. Kevin W. Boyack & Katy Börner, 2003. "Indicator‐assisted evaluation and funding of research: Visualizing the influence of grants on the number and citation counts of research papers," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 447-461, March.
    12. Fiona Murray & Scott Stern, 2005. "Do Formal Intellectual Property Rights Hinder the Free Flow of Scientific Knowledge? An Empirical Test of the Anti-Commons Hypothesis," NBER Working Papers 11465, National Bureau of Economic Research, Inc.
    13. Mary J. Culnan, 1986. "The Intellectual Development of Management Information Systems, 1972--1982: A Co-Citation Analysis," Management Science, INFORMS, vol. 32(2), pages 156-172, February.
    14. Leonard J. Ponzi, 2002. "The intellectual structure and interdisciplinary breadth of Knowledge Management: A bibliometric study of its early stage of development," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(2), pages 259-272, August.
    15. E. Hassan, 2003. "Simultaneous mapping of interactions between scientific and technological knowledge bases: The case of space communications," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 462-468, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Phineas Upham & Lori Rosenkopf & Lyle H. Ungar, 2010. "Innovating knowledge communities," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(2), pages 525-554, May.
    2. S. Phineas Upham & Lori Rosenkopf & Lyle H. Ungar, 2010. "Positioning knowledge: schools of thought and new knowledge creation," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(2), pages 555-581, May.
    3. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    4. Acedo, Francisco José & Casillas, José Carlos, 2005. "Current paradigms in the international management field: An author co-citation analysis," International Business Review, Elsevier, vol. 14(5), pages 619-639, October.
    5. Fabrizio, Kira R., 2009. "Absorptive capacity and the search for innovation," Research Policy, Elsevier, vol. 38(2), pages 255-267, March.
    6. Avimanyu Datta, 2016. "Antecedents To Radical Innovations: A Longitudinal Look At Firms In The Information Technology Industry By Aggregation Of Patents," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-31, October.
    7. Boeker, Warren & Howard, Michael D. & Basu, Sandip & Sahaym, Arvin, 2021. "Interpersonal relationships, digital technologies, and innovation in entrepreneurial ventures," Journal of Business Research, Elsevier, vol. 125(C), pages 495-507.
    8. Hirschey, Mark & Richardson, Vernon J., 2001. "Valuation effects of patent quality: A comparison for Japanese and U.S. firms," Pacific-Basin Finance Journal, Elsevier, vol. 9(1), pages 65-82, January.
    9. Barankay, Iwan & Contigiani, Andrea & Hsu, David, 2018. "Trade Secrets and Innovation: Evidence from the “Inevitable Disclosure†Doctrine," CEPR Discussion Papers 13077, C.E.P.R. Discussion Papers.
    10. Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.
    11. Ganco, Martin, 2017. "NK model as a representation of innovative search," Research Policy, Elsevier, vol. 46(10), pages 1783-1800.
    12. Chris W. Belter, 2013. "A bibliometric analysis of NOAA’s Office of Ocean Exploration and Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 629-644, May.
    13. Leonardo Costa Ribeiro & Glenda Kruss & Gustavo Britto & Américo Tristão Bernardes & Eduardo Motta e Albuquerque, 2014. "A methodology for unveiling global innovation networks: patent citations as clues to cross border knowledge flows," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 61-83, October.
    14. Jackie Krafft & Francesco Quatraro, 2011. "The Dynamics of Technological Knowledge: From Linearity to Recombination," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 7, Edward Elgar Publishing.
    15. Fischer, Timo & Henkel, Joachim, 2012. "Patent trolls on markets for technology – An empirical analysis of NPEs’ patent acquisitions," Research Policy, Elsevier, vol. 41(9), pages 1519-1533.
    16. Jian Zhang & Michael S. Vogeley & Chaomei Chen, 2011. "Scientometrics of big science: a case study of research in the Sloan Digital Sky Survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 1-14, January.
    17. Jan M. Gerken & Martin G. Moehrle, 2012. "A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 645-670, June.
    18. Basse Mama, Houdou, 2018. "Nonlinear capital market payoffs to science-led innovation," Research Policy, Elsevier, vol. 47(6), pages 1084-1095.
    19. Pan, Xuelian & Yan, Erjia & Cui, Ming & Hua, Weina, 2018. "Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools," Journal of Informetrics, Elsevier, vol. 12(2), pages 481-493.
    20. Lorenzo Ardito & Antonio Messeni Petruzzelli & Federica Pascucci & Enzo Peruffo, 2019. "Inter‐firm R&D collaborations and green innovation value: The role of family firms' involvement and the moderating effects of proximity dimensions," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 185-197, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:83:y:2010:i:1:d:10.1007_s11192-009-0051-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.