IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v116y2018i2d10.1007_s11192-018-2772-0.html
   My bibliography  Save this article

Identifying “hot papers” and papers with “delayed recognition” in large-scale datasets by using dynamically normalized citation impact scores

Author

Listed:
  • Lutz Bornmann

    (Administrative Headquarters of the Max Planck Society)

  • Adam Y. Ye

    (Peking University)

  • Fred Y. Ye

    (Nanjing University)

Abstract

“Hot papers” (HPs) are papers which received a boost of citations shortly after publication. Papers with “delayed recognition” (DRs) received scarcely impact over a long time period, before a considerable citation boost started. DRs have attracted a lot of attention in scientometrics and beyond. Based on a comprehensive dataset with more than 5,000,000 papers published between 1980 and 1990, we identified HPs and DRs. In contrast to many other studies on DRs, which are based on raw citation counts, we calculated dynamically field-normalized impact scores for the search of HPs and DRs. This study is intended to investigate the differences between HPs (n = 323) and DRs (n = 315). The investigation of the journals which have published HPs and DRs revealed that some journals (e.g. Physical Review Letters and PNAS) were able to publish significantly more HPs than other journals. This pattern did not appear in DRs. Many HPs and DRs have been published by authors from the USA; however, in contrast to other countries, authors from the USA have published statistically significantly more HPs than DRs. Whereas “Biochemistry & Molecular Biology,” “Immunology,” and “Cell Biology” have published significantly more HPs than DRs, the opposite result arrived for “Surgery” and “Orthopedics.” The results of the analysis of certain properties of HPs and DRs (e.g. number of pages) suggest that the emergence of DRs is an unpredictable process.

Suggested Citation

  • Lutz Bornmann & Adam Y. Ye & Fred Y. Ye, 2018. "Identifying “hot papers” and papers with “delayed recognition” in large-scale datasets by using dynamically normalized citation impact scores," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 655-674, August.
  • Handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2772-0
    DOI: 10.1007/s11192-018-2772-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2772-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2772-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. P. F. Peters & A. F. J. van Raan, 1994. "On determinants of citation scores: A case study in chemical engineering," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 45(1), pages 39-49, January.
    2. Rodrigo Costas & Thed N. van Leeuwen & Anthony F.J. van Raan, 2010. "Is scientific literature subject to a ‘Sell-By-Date’? A general methodology to analyze the ‘durability’ of scientific documents," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(2), pages 329-339, February.
    3. Ben Van Calster, 2012. "It takes time: A remarkable example of delayed recognition," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2341-2344, November.
    4. Anthony F.J. van Raan, 2008. "Bibliometric statistical properties of the 100 largest European research universities: Prevalent scaling rules in the science system," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(3), pages 461-475, February.
    5. Seyed Reza Mirnezami & Catherine Beaudry & Vincent Larivière, 2016. "What determines researchers’ scientific impact? A case study of Quebec researchers," Science and Public Policy, Oxford University Press, vol. 43(2), pages 262-274.
    6. Jiang Li & Fred Y. Ye, 2012. "The phenomenon of all-elements-sleeping-beauties in scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 795-799, September.
    7. Fok, Dennis & Franses, Philip Hans, 2007. "Modeling the diffusion of scientific publications," Journal of Econometrics, Elsevier, vol. 139(2), pages 376-390, August.
    8. Jian Wang, 2013. "Citation time window choice for research impact evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 851-872, March.
    9. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    10. Ben Calster, 2012. "It takes time: A remarkable example of delayed recognition," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2341-2344, November.
    11. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    12. Bornmann, Lutz & Leydesdorff, Loet, 2017. "Skewness of citation impact data and covariates of citation distributions: A large-scale empirical analysis based on Web of Science data," Journal of Informetrics, Elsevier, vol. 11(1), pages 164-175.
    13. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    14. Wolfgang Glänzel & Balázs Schlemmer & Bart Thijs, 2003. "Better late than never? On the chance to become highly cited only beyond the standard bibliometric time horizon," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 571-586, November.
    15. Donald deB. Beaver, 2004. "Does collaborative research have greater epistemic authority?," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(3), pages 399-408, August.
    16. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    17. Susanne E. Baumgartner & Loet Leydesdorff, 2014. "Group-based trajectory modeling (GBTM) of citations in scholarly literature: Dynamic qualities of “transient” and “sticky knowledge claims”," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 797-811, April.
    18. Jiang Li & Dongbo Shi, 2016. "Sleeping beauties in genius work: When were they awakened?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(2), pages 432-440, February.
    19. Philippe Gorry & Pascal Ragouet, 2016. "“Sleeping beauty” and her restless sleep: Charles Dotter and the birth of interventional radiology," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 773-784, May.
    20. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    21. Vanclay, Jerome K., 2013. "Factors affecting citation rates in environmental science," Journal of Informetrics, Elsevier, vol. 7(2), pages 265-271.
    22. Li, Jiang & Shi, Dongbo & Zhao, Star X. & Ye, Fred Y., 2014. "A study of the “heartbeat spectra” for “sleeping beauties”," Journal of Informetrics, Elsevier, vol. 8(3), pages 493-502.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    2. Hans-Dieter Daniel, 2019. "Lutz Bornmann: Recipient of the 2019 Derek John de Solla Price Medal," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1235-1238, December.
    3. Jianhua Hou & Xiucai Yang, 2019. "Patent sleeping beauties: evolutionary trajectories and identification methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 187-215, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Fang, 2018. "Analysing the variation tendencies of the numbers of yearly citations for sleeping beauties in science by using derivative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1051-1070, May.
    2. Bornmann, Lutz, 2019. "Does the normalized citation impact of universities profit from certain properties of their published documents – such as the number of authors and the impact factor of the publishing journals? A mult," Journal of Informetrics, Elsevier, vol. 13(1), pages 170-184.
    3. Onodera, Natsuo, 2016. "Properties of an index of citation durability of an article," Journal of Informetrics, Elsevier, vol. 10(4), pages 981-1004.
    4. Jianhua Hou & Xiucai Yang, 2019. "Patent sleeping beauties: evolutionary trajectories and identification methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 187-215, July.
    5. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    6. Bornmann, Lutz & Haunschild, Robin & Mutz, Rüdiger, 2020. "Should citations be field-normalized in evaluative bibliometrics? An empirical analysis based on propensity score matching," Journal of Informetrics, Elsevier, vol. 14(4).
    7. Guoqiang Liang & Haiyan Hou & Xiaodan Lou & Zhigang Hu, 2019. "Qualifying threshold of “take-off” stage for successfully disseminated creative ideas," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1193-1208, September.
    8. Bornmann, Lutz & Tekles, Alexander, 2021. "Convergent validity of several indicators measuring disruptiveness with milestone assignments to physics papers by experts," Journal of Informetrics, Elsevier, vol. 15(3).
    9. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    10. Miura, Takahiro & Asatani, Kimitaka & Sakata, Ichiro, 2023. "Revisiting the uniformity and inconsistency of slow-cited papers in science," Journal of Informetrics, Elsevier, vol. 17(1).
    11. Adil El Aichouchi & Philippe Gorry, 2018. "Delayed recognition of Judah Folkman’s hypothesis on tumor angiogenesis: when a Prince awakens a Sleeping Beauty by self-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 385-399, July.
    12. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    13. Helena H. Zhang & Fred Y. Ye, 2020. "Identifying ‘associated-sleeping-beauties’ in ‘swan-groups’ based on small qualified datasets of physics and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1525-1537, March.
    14. Min, Chao & Sun, Jianjun & Pei, Lei & Ding, Ying, 2016. "Measuring delayed recognition for papers: Uneven weighted summation and total citations," Journal of Informetrics, Elsevier, vol. 10(4), pages 1153-1165.
    15. Aurora A. C. Teixeira & Pedro Cosme Vieira & Ana Patrícia Abreu, 2017. "Sleeping Beauties and their princes in innovation studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 541-580, February.
    16. Bornmann, Lutz & Leydesdorff, Loet, 2017. "Skewness of citation impact data and covariates of citation distributions: A large-scale empirical analysis based on Web of Science data," Journal of Informetrics, Elsevier, vol. 11(1), pages 164-175.
    17. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    18. Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
    19. Jiang Li & Fred Y. Ye, 2016. "Distinguishing sleeping beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 821-828, August.
    20. ZhangJian Zong & XuanZhen Liu & Hui Fang, 2018. "Sleeping beauties with no prince based on the co-citation criterion," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1841-1852, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2772-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.