IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v15y2021i2s1751157721000110.html
   My bibliography  Save this article

Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network

Author

Listed:
  • Zhang, Xinyuan
  • Xie, Qing
  • Song, Min

Abstract

The factors influencing academic citations have been extensively discussed in the literature. However, few studies have investigated whether atypical recombinations of references, topics, and keywords, and academic-network factors (e.g., author citation network-related factors, co-author network-related factors, and institution citation network-related factors) are correlated with paper citation counts. Also, most previous studies have only focused on one discipline. Twenty-four factors were classified into three main categories, including the novelty of the paper, bibliometric indicators, and the influence of the academic network of authors and institutions, which have not yet been simultaneously considered. To fill this gap in the literature, a neural network model was constructed to measure the influence of these 24 factors on citation counts using the weight product of connecting neurons. The results demonstrated that the influence of novelty, bibliometric, and academic-network-related factors on citation counts vary significantly among the four studied disciplines (library & information science, nuclear science & technology, computer science & software engineering, and history). It was found that the influence of multiple factors in the novelty category on citation counts is higher than the bibliometric and academic-network categories, while the individual factor in the novelty category is not always the most influential factor (median z-score, recombination topic pairs, and recombination keyword pairs).

Suggested Citation

  • Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
  • Handle: RePEc:eee:infome:v:15:y:2021:i:2:s1751157721000110
    DOI: 10.1016/j.joi.2021.101140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157721000110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2021.101140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2014. "How to improve the prediction based on citation impact percentiles for years shortly after the publication date?," Journal of Informetrics, Elsevier, vol. 8(1), pages 175-180.
    2. Abbasi, Alireza & Hossain, Liaquat & Leydesdorff, Loet, 2012. "Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 403-412.
    3. Vincent Larivière & Chaoqun Ni & Yves Gingras & Blaise Cronin & Cassidy R. Sugimoto, 2013. "Bibliometrics: Global gender disparities in science," Nature, Nature, vol. 504(7479), pages 211-213, December.
    4. Yan Yan & Shanwu Tian & Jingjing Zhang, 2020. "The impact of a paper’s new combinations and new components on its citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 895-913, February.
    5. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    6. Loet Leydesdorff & Lutz Bornmann & Caroline S. Wagner, 2019. "The Relative Influences of Government Funding and International Collaboration on Citation Impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(2), pages 198-201, February.
    7. George A. Lozano & Vincent Larivière & Yves Gingras, 2012. "The weakening relationship between the impact factor and papers' citations in the digital age," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2140-2145, November.
    8. Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
    9. Vincent Larivière & Yves Gingras, 2010. "The impact factor's Matthew Effect: A natural experiment in bibliometrics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(2), pages 424-427, February.
    10. Iman Tahamtan & Lutz Bornmann, 2019. "What do citation counts measure? An updated review of studies on citations in scientific documents published between 2006 and 2018," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1635-1684, December.
    11. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    12. Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
    13. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Felici, Giovanni, 2019. "Predicting publication long-term impact through a combination of early citations and journal impact factor," Journal of Informetrics, Elsevier, vol. 13(1), pages 32-49.
    14. Nabil Amara & Réjean Landry & Norrin Halilem, 2015. "What can university administrators do to increase the publication and citation scores of their faculty members?," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 489-530, May.
    15. Andrea Giovanni Nuzzolese & Paolo Ciancarini & Aldo Gangemi & Silvio Peroni & Francesco Poggi & Valentina Presutti, 2019. "Do altmetrics work for assessing research quality?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 539-562, February.
    16. Massucci, Francesco Alessandro & Docampo, Domingo, 2019. "Measuring the academic reputation through citation networks via PageRank," Journal of Informetrics, Elsevier, vol. 13(1), pages 185-201.
    17. Mike Thelwall, 2017. "Are Mendeley reader counts useful impact indicators in all fields?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1721-1731, December.
    18. Torsten Diekhoff & Peter Schlattmann & Marc Dewey, 2013. "Impact of Article Language in Multi-Language Medical Journals - a Bibliometric Analysis of Self-Citations and Impact Factor," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    19. Vincent Larivière & Yves Gingras, 2010. "The impact factor's Matthew Effect: A natural experiment in bibliometrics," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(2), pages 424-427, February.
    20. Jenny Wooldridge & Mike B. King, 2019. "Altmetric scores: An early indicator of research impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(3), pages 271-282, March.
    21. George A. Lozano & Vincent Larivière & Yves Gingras, 2012. "The weakening relationship between the impact factor and papers' citations in the digital age," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2140-2145, November.
    22. Jian Wang, 2013. "Citation time window choice for research impact evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 851-872, March.
    23. Ã ine Regan & Maeve Henchion, 2019. "Making sense of altmetrics: The perceived threats and opportunities for academic identity," Science and Public Policy, Oxford University Press, vol. 46(4), pages 479-489.
    24. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    25. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    26. John Rigby, 2013. "Looking for the impact of peer review: does count of funding acknowledgements really predict research impact?," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 57-73, January.
    27. Kevin W. Boyack & Katy Börner, 2003. "Indicator‐assisted evaluation and funding of research: Visualizing the influence of grants on the number and citation counts of research papers," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 447-461, March.
    28. MARK J. McCABE & CHRISTOPHER M. SNYDER, 2014. "Identifying The Effect Of Open Access On Citations Using A Panel Of Science Journals," Economic Inquiry, Western Economic Association International, vol. 52(4), pages 1284-1300, October.
    29. Atanu Sengupta & Sanjoy De, 2020. "Review of Literature," India Studies in Business and Economics, in: Assessing Performance of Banks in India Fifty Years After Nationalization, chapter 0, pages 15-30, Springer.
    30. Schilling, Melissa A. & Green, Elad, 2011. "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Research Policy, Elsevier, vol. 40(10), pages 1321-1331.
    31. Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
    32. Stephanie Valdivia & Arturo Morales, 2016. "Determinants Of The Index Of Prices And Quotations On The Mexican Stock Exchange: Sensitivity Analysis Based On Artificial Neural Networks," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 10(2), pages 27-32.
    33. Fen Zhao & Yi Zhang & Jianguo Lu & Ofer Shai, 2019. "Measuring academic influence using heterogeneous author-citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1119-1140, March.
    34. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    35. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    36. Natsuo Onodera & Fuyuki Yoshikane, 2015. "Factors affecting citation rates of research articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(4), pages 739-764, April.
    37. Cimenler, Oguz & Reeves, Kingsley A. & Skvoretz, John, 2014. "A regression analysis of researchers’ social network metrics on their citation performance in a college of engineering," Journal of Informetrics, Elsevier, vol. 8(3), pages 667-682.
    38. Schreiber, Michael, 2015. "Restricting the h-index to a publication and citation time window: A case study of a timed Hirsch index," Journal of Informetrics, Elsevier, vol. 9(1), pages 150-155.
    39. Thelwall, Mike & Nevill, Tamara, 2018. "Could scientists use Altmetric.com scores to predict longer term citation counts?," Journal of Informetrics, Elsevier, vol. 12(1), pages 237-248.
    40. Juan Xie & Kaile Gong & Jiang Li & Qing Ke & Hyonchol Kang & Ying Cheng, 2019. "A probe into 66 factors which are possibly associated with the number of citations an article received," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1429-1454, June.
    41. Loet Leydesdorff, 2009. "How are new citation‐based journal indicators adding to the bibliometric toolbox?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(7), pages 1327-1336, July.
    42. Bai, Xiaomei & Zhang, Fuli & Lee, Ivan, 2019. "Predicting the citations of scholarly paper," Journal of Informetrics, Elsevier, vol. 13(1), pages 407-418.
    43. Kevin J. Boudreau & Eva C. Guinan & Karim R. Lakhani & Christoph Riedl, 2016. "Looking Across and Looking Beyond the Knowledge Frontier: Intellectual Distance, Novelty, and Resource Allocation in Science," Management Science, INFORMS, vol. 62(10), pages 2765-2783, October.
    44. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    45. Ehsan Mohammadi & Mike Thelwall, 2014. "Mendeley readership altmetrics for the social sciences and humanities: Research evaluation and knowledge flows," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(8), pages 1627-1638, August.
    46. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    47. Vanclay, Jerome K., 2013. "Factors affecting citation rates in environmental science," Journal of Informetrics, Elsevier, vol. 7(2), pages 265-271.
    48. Rodrigo Costas & Zohreh Zahedi & Paul Wouters, 2015. "Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(10), pages 2003-2019, October.
    49. Bornmann, Lutz & Schier, Hermann & Marx, Werner & Daniel, Hans-Dieter, 2012. "What factors determine citation counts of publications in chemistry besides their quality?," Journal of Informetrics, Elsevier, vol. 6(1), pages 11-18.
    50. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jinqing & Liu, Zhifeng, 2022. "The effect of citation behaviour on knowledge diffusion and intellectual structure," Journal of Informetrics, Elsevier, vol. 16(1).
    2. Mingyue Sun & Tingcan Ma & Lewei Zhou & Mingliang Yue, 2023. "Analysis of the relationships among paper citation and its influencing factors: a Bayesian network-based approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3017-3033, May.
    3. Elizabeth S. Vieira, 2023. "The influence of research collaboration on citation impact: the countries in the European Innovation Scoreboard," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3555-3579, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    2. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    3. Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
    4. Elizabeth S. Vieira, 2023. "The influence of research collaboration on citation impact: the countries in the European Innovation Scoreboard," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3555-3579, June.
    5. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    6. Lanu Kim & Jason H. Portenoy & Jevin D. West & Katherine W. Stovel, 2020. "Scientific journals still matter in the era of academic search engines and preprint archives," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1218-1226, October.
    7. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    8. Kaile Gong & Juan Xie & Ying Cheng & Vincent Larivière & Cassidy R. Sugimoto, 2019. "The citation advantage of foreign language references for Chinese social science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1439-1460, September.
    9. Bornmann, Lutz, 2019. "Does the normalized citation impact of universities profit from certain properties of their published documents – such as the number of authors and the impact factor of the publishing journals? A mult," Journal of Informetrics, Elsevier, vol. 13(1), pages 170-184.
    10. Dehdarirad, Tahereh & Nasini, Stefano, 2017. "Research impact in co-authorship networks: a two-mode analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 371-388.
    11. Akella, Akhil Pandey & Alhoori, Hamed & Kondamudi, Pavan Ravikanth & Freeman, Cole & Zhou, Haiming, 2021. "Early indicators of scientific impact: Predicting citations with altmetrics," Journal of Informetrics, Elsevier, vol. 15(2).
    12. Guoqiang Liang & Haiyan Hou & Xiaodan Lou & Zhigang Hu, 2019. "Qualifying threshold of “take-off” stage for successfully disseminated creative ideas," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1193-1208, September.
    13. Mingyue Sun & Tingcan Ma & Lewei Zhou & Mingliang Yue, 2023. "Analysis of the relationships among paper citation and its influencing factors: a Bayesian network-based approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3017-3033, May.
    14. Bornmann, Lutz & Haunschild, Robin & Mutz, Rüdiger, 2020. "Should citations be field-normalized in evaluative bibliometrics? An empirical analysis based on propensity score matching," Journal of Informetrics, Elsevier, vol. 14(4).
    15. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    16. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    17. Copiello, Sergio, 2019. "Peer and neighborhood effects: Citation analysis using a spatial autoregressive model and pseudo-spatial data," Journal of Informetrics, Elsevier, vol. 13(1), pages 238-254.
    18. Jianhua Hou & Bili Zheng & Yang Zhang & Chaomei Chen, 2021. "How do Price medalists’ scholarly impact change before and after their awards?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5945-5981, July.
    19. Zahedi, Zohreh & Haustein, Stefanie, 2018. "On the relationships between bibliographic characteristics of scientific documents and citation and Mendeley readership counts: A large-scale analysis of Web of Science publications," Journal of Informetrics, Elsevier, vol. 12(1), pages 191-202.
    20. Jianhua Hou & Da Ma, 2020. "How the high-impact papers formed? A study using data from social media and citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2597-2615, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:15:y:2021:i:2:s1751157721000110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.