IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i7d10.1007_s11192-021-03979-y.html
   My bibliography  Save this article

How do Price medalists’ scholarly impact change before and after their awards?

Author

Listed:
  • Jianhua Hou

    (Sun Yat-Sen University)

  • Bili Zheng

    (Sun Yat-Sen University)

  • Yang Zhang

    (Sun Yat-Sen University)

  • Chaomei Chen

    (Drexel University
    Yonsei University)

Abstract

How a scholar's achievement and productivity may change by the award of an academic prize is a topic of a long-term interest in research fields such as scientometrics. Numerous studies have explored the impact of receiving a Nobel Prize, a Turing Award, and other international awards on laureates' scholarly performance, but relatively less attention has been paid to the impact of Derek John de Solla Price Medal on its recipients. This paper adopts the methodology of Structural Variation Analysis (SVA) to evaluate how Price medalists' research are impacted, if any, in terms of citation, h-index, and structural variation patterns in underlying collaborative networks. Moreover, we compare the SVA metrics with other indicators such as composite scores and Highly Cited Researchers (HCR). Our results show that: a Price Medal award may not necessarily boost the medalist’s scholarly potential, actual academic impact and collaboration patterns in a degree that is statistically significant. But the SVA method is a better indicator to evaluate the Price Medalist, especially in five-year time windows.

Suggested Citation

  • Jianhua Hou & Bili Zheng & Yang Zhang & Chaomei Chen, 2021. "How do Price medalists’ scholarly impact change before and after their awards?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5945-5981, July.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:7:d:10.1007_s11192-021-03979-y
    DOI: 10.1007/s11192-021-03979-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-03979-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-03979-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isabel Gómez & María Teresa Fernández & Jesús Sebastián, 1999. "Analysis of the structure of international scientific cooperation networks through bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 44(3), pages 441-457, March.
    2. George J. Borjas & Kirk B. Doran, 2015. "Prizes and Productivity: How Winning the Fields Medal Affects Scientific Output," Journal of Human Resources, University of Wisconsin Press, vol. 50(3), pages 728-758.
    3. Guangyuan Hu & Lei Wang & Rong Ni & Weishu Liu, 2020. "Which h-index? An exploration within the Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(3), pages 1225-1233, June.
    4. Todd Dewett & Angelo S. Denisi, 2004. "Exploring scholarly reputation: It's more than just productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(2), pages 249-272, June.
    5. Ali Gazni & Cassidy R. Sugimoto & Fereshteh Didegah, 2012. "Mapping world scientific collaboration: Authors, institutions, and countries," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(2), pages 323-335, February.
    6. Ali Gazni & Cassidy R. Sugimoto & Fereshteh Didegah, 2012. "Mapping world scientific collaboration: Authors, institutions, and countries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(2), pages 323-335, February.
    7. Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
    8. Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
    9. Andrea Giovanni Nuzzolese & Paolo Ciancarini & Aldo Gangemi & Silvio Peroni & Francesco Poggi & Valentina Presutti, 2019. "Do altmetrics work for assessing research quality?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 539-562, February.
    10. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    11. Cassidy R. Sugimoto & Sam Work & Vincent Larivière & Stefanie Haustein, 2017. "Scholarly use of social media and altmetrics: A review of the literature," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(9), pages 2037-2062, September.
    12. Anthony F. J. van Raan, 2004. "Sleeping Beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 467-472, March.
    13. Debarshi Kumar Sanyal & Sumana Dey & Partha Pratim Das, 2020. "gm-index: a new mentorship index for researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 71-102, April.
    14. Yves Gingras & Matthew L. Wallace, 2010. "Why it has become more difficult to predict Nobel Prize winners: a bibliometric analysis of nominees and winners of the chemistry and physics prizes (1901–2007)," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 401-412, February.
    15. Julia H. Chariker & Yihang Zhang & John R. Pani & Eric C. Rouchka, 2017. "Identification of successful mentoring communities using network-based analysis of mentor–mentee relationships across Nobel laureates," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1733-1749, June.
    16. Duane Truex & Michael Cuellar & Hirotoshi Takeda & Richard Vidgen, 2011. "The Scholarly Influence of Heinz Klein: Ideational and Social Measures of His Impact on IS Research and IS Scholars," Post-Print halshs-00662462, HAL.
    17. Franceschet, Massimo & Costantini, Antonio, 2010. "The effect of scholar collaboration on impact and quality of academic papers," Journal of Informetrics, Elsevier, vol. 4(4), pages 540-553.
    18. Cassidy R. Sugimoto & Chaoqun Ni & Terrell G. Russell & Brenna Bychowski, 2011. "Academic genealogy as an indicator of interdisciplinarity: An examination of dissertation networks in Library and Information Science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(9), pages 1808-1828, September.
    19. Thorsten Gruber, 2014. "Academic sell-out: how an obsession with metrics and rankings is damaging academia," Journal of Marketing for Higher Education, Taylor & Francis Journals, vol. 24(2), pages 165-177, December.
    20. Michael Schreiber, 2008. "An empirical investigation of the g‐index for 26 physicists in comparison with the h‐index, the A‐index, and the R‐index," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(9), pages 1513-1522, July.
    21. Bornmann, Lutz, 2014. "Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics," Journal of Informetrics, Elsevier, vol. 8(4), pages 895-903.
    22. Liang, Guoqiang & Hou, Haiyan & Ding, Ying & Hu, Zhigang, 2020. "Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country," Journal of Informetrics, Elsevier, vol. 14(3).
    23. Bornmann, Lutz & Haunschild, Robin & Adams, Jonathan, 2019. "Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF)," Journal of Informetrics, Elsevier, vol. 13(1), pages 325-340.
    24. Cassidy R. Sugimoto & Chaoqun Ni & Terrell G. Russell & Brenna Bychowski, 2011. "Academic genealogy as an indicator of interdisciplinarity: An examination of dissertation networks in Library and Information Science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(9), pages 1808-1828, September.
    25. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    26. repec:dau:papers:123456789/8142 is not listed on IDEAS
    27. Bornmann, Lutz & Haunschild, Robin, 2018. "Normalization of zero-inflated data: An empirical analysis of a new indicator family and its use with altmetrics data," Journal of Informetrics, Elsevier, vol. 12(3), pages 998-1011.
    28. Ho F. Chan & Franklin G. Mixon & Benno Torgler, 2018. "Relation of early career performance and recognition to the probability of winning the Nobel Prize in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1069-1086, March.
    29. Ho Fai Chan & Ali Sina Önder & Benno Torgler, 2016. "The first cut is the deepest: repeated interactions of coauthorship and academic productivity in Nobel laureate teams," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 509-524, February.
    30. Atanu Sengupta & Sanjoy De, 2020. "Review of Literature," India Studies in Business and Economics, in: Assessing Performance of Banks in India Fifty Years After Nationalization, chapter 0, pages 15-30, Springer.
    31. Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
    32. Bornmann, Lutz, 2014. "Validity of altmetrics data for measuring societal impact: A study using data from Altmetric and F1000Prime," Journal of Informetrics, Elsevier, vol. 8(4), pages 935-950.
    33. Ding, Ying, 2011. "Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks," Journal of Informetrics, Elsevier, vol. 5(1), pages 187-203.
    34. Caroline S Wagner & Edwin Horlings & Travis A Whetsell & Pauline Mattsson & Katarina Nordqvist, 2015. "Do Nobel Laureates Create Prize-Winning Networks? An Analysis of Collaborative Research in Physiology or Medicine," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-13, July.
    35. Roth, Camille & Wu, Jiang & Lozano, Sergi, 2012. "Assessing impact and quality from local dynamics of citation networks," Journal of Informetrics, Elsevier, vol. 6(1), pages 111-120.
    36. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    37. Dietz, James S. & Bozeman, Barry, 2005. "Academic careers, patents, and productivity: industry experience as scientific and technical human capital," Research Policy, Elsevier, vol. 34(3), pages 349-367, April.
    38. Ho Fai Chan & Ali Sina Önder & Benno Torgler, 2015. "Do Nobel laureates change their patterns of collaboration following prize reception?," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2215-2235, December.
    39. Rossi, Luciano & Freire, Igor L. & Mena-Chalco, Jesús P., 2017. "Genealogical index: A metric to analyze advisor–advisee relationships," Journal of Informetrics, Elsevier, vol. 11(2), pages 564-582.
    40. Mark Levene & Martyn Harris & Trevor Fenner, 2020. "A two-dimensional bibliometric index reflecting both quality and quantity," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(3), pages 1235-1246, June.
    41. Marek Kosmulski, 2020. "Nobel laureates are not hot," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 487-495, April.
    42. Lutz Bornmann, 2015. "Alternative metrics in scientometrics: a meta-analysis of research into three altmetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 1123-1144, June.
    43. Rodrigo Costas & Zohreh Zahedi & Paul Wouters, 2015. "Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(10), pages 2003-2019, October.
    44. Juntao Zheng & Niancai Liu, 2015. "Mapping of important international academic awards," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 763-791, September.
    45. Lutz Bornmann & Robin Haunschild, 2016. "Overlay maps based on Mendeley data: The use of altmetrics for readership networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(12), pages 3064-3072, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julián D. Cortés & Daniel A. Andrade, 2022. "Winners and runners-up alike?—a comparison between awardees and special mention recipients of the most reputable science award in Colombia via a composite citation indicator," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    2. Yinghua Xie & Dong Lang & Shuna Lin & Fangfei Chen & Xiaodong Sang & Peng Gu & Ruijun Wu & Zhifei Li & Xuan Zhu & Lu Ji, 2021. "Mapping Maternal Health in the New Media Environment: A Scientometric Analysis," IJERPH, MDPI, vol. 18(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Copiello, 2020. "Other than detecting impact in advance, alternative metrics could act as early warning signs of retractions: tentative findings of a study into the papers retracted by PLoS ONE," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2449-2469, December.
    2. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    3. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    4. Jianhua Hou & Da Ma, 2020. "How the high-impact papers formed? A study using data from social media and citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2597-2615, December.
    5. Iván Aranzales & Ho Fai Chan & Benno Torgler, 2023. "Finally! How time lapse in Nobel Prize reception affects emotionality in the Nobel Prize banquet speeches," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(7), pages 4089-4115, July.
    6. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    7. Wen Lou & Jiangen He & Lingxin Zhang & Zhijie Zhu & Yongjun Zhu, 2023. "Support behind the scenes: the relationship between acknowledgement, coauthor, and citation in Nobel articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5767-5790, October.
    8. Jingda Ding & Yifan Chen & Chao Liu, 2023. "Exploring the research features of Nobel laureates in Physics based on the semantic similarity measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5247-5275, September.
    9. Chen, Kaihua & Zhang, Yi & Fu, Xiaolan, 2019. "International research collaboration: An emerging domain of innovation studies?," Research Policy, Elsevier, vol. 48(1), pages 149-168.
    10. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    11. Julián D. Cortés & Daniel A. Andrade, 2022. "Winners and runners-up alike?—a comparison between awardees and special mention recipients of the most reputable science award in Colombia via a composite citation indicator," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    12. Debarshi Kumar Sanyal & Sumana Dey & Partha Pratim Das, 2020. "gm-index: a new mentorship index for researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 71-102, April.
    13. Ying Guo & Xiantao Xiao, 2022. "Author-level altmetrics for the evaluation of Chinese scholars," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 973-990, February.
    14. Önder, Ali Sina & Schweitzer, Sascha & Yilmazkuday, Hakan, 2021. "Specialization, field distance, and quality in economists’ collaborations," Journal of Informetrics, Elsevier, vol. 15(4).
    15. Jianhua Hou & Xiucai Yang & Yang Zhang, 2023. "The effect of social media knowledge cascade: an analysis of scientific papers diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5169-5195, September.
    16. Ali Sina Önder & Sascha Schweitzer & Hakan Yilmazkuday, 2021. "Field Distance and Quality in Economists’ Collaborations," Working Papers in Economics & Finance 2021-04, University of Portsmouth, Portsmouth Business School, Economics and Finance Subject Group.
    17. Liwei Zhang & Jue Wang, 2021. "What affects publications’ popularity on Twitter?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9185-9198, November.
    18. Bornmann, Lutz & Haunschild, Robin & Adams, Jonathan, 2019. "Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF)," Journal of Informetrics, Elsevier, vol. 13(1), pages 325-340.
    19. Zehra Taşkın, 2021. "Forecasting the future of library and information science and its sub-fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1527-1551, February.
    20. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:7:d:10.1007_s11192-021-03979-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.