IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v111y2017i3d10.1007_s11192-017-2342-x.html
   My bibliography  Save this article

A measure of staying power: Is the persistence of emergent concepts more significantly influenced by technical domain or scale?

Author

Listed:
  • Stephen F. Carley

    (Georgia Tech
    Search Technology, Inc)

  • Nils C. Newman

    (Search Technology, Inc
    Intelligent Information Services Corporation)

  • Alan L. Porter

    (Georgia Tech
    Search Technology, Inc)

  • Jon G. Garner

    (Search Technology, Inc)

Abstract

This study advances a four-part indicator for technical emergence. While doing so it focuses on a particular class of emergent concepts—those which display the ability to repeatedly maintain an emergent status over multiple time periods. The authors refer to this quality as staying power and argue that those concepts which maintain this ability are deserving of greater attention. The case study we consider consists of 15 subdatatsets within the dye-sensitized solar cell framework. In this study the authors consider the impact technical domain and scale have on the behavior of persistently emergent concepts and test which of these has a greater influence.

Suggested Citation

  • Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2017. "A measure of staying power: Is the persistence of emergent concepts more significantly influenced by technical domain or scale?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2077-2087, June.
  • Handle: RePEc:spr:scient:v:111:y:2017:i:3:d:10.1007_s11192-017-2342-x
    DOI: 10.1007/s11192-017-2342-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2342-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2342-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu An & Xia Lin & Chuanming Yu & Xinwen Zhang, 2015. "Measuring and visualizing the contributions of Chinese and American LIS research institutions to emerging themes and salient themes," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1605-1634, December.
    2. Sanjay K. Arora & Alan L. Porter & Jan Youtie & Philip Shapira, 2013. "Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 351-370, April.
    3. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    4. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Porter, Alan L. & Garner, Jon & Carley, Stephen F. & Newman, Nils C., 2019. "Emergence scoring to identify frontier R&D topics and key players," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 628-643.
    2. Xiaoyu Liu & Alan L. Porter, 2020. "A 3-dimensional analysis for evaluating technology emergence indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 27-55, July.
    3. Wang, Zhinan & Porter, Alan L. & Wang, Xuefeng & Carley, Stephen, 2019. "An approach to identify emergent topics of technological convergence: A case study for 3D printing," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 723-732.
    4. Burmaoglu, Serhat & Sartenaer, Olivier & Porter, Alan, 2019. "Conceptual definition of technology emergence: A long journey from philosophy of science to science policy," Technology in Society, Elsevier, vol. 59(C).
    5. Porter, Alan L. & Chiavetta, Denise & Newman, Nils C., 2020. "Measuring tech emergence: A contest," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    6. Xiao Zhou & Lu Huang & Yi Zhang & Miaomiao Yu, 2019. "A hybrid approach to detecting technological recombination based on text mining and patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 699-737, November.
    7. Serhat Burmaoglu & Olivier Sartenaer & Alan Porter & Munan Li, 2019. "Analysing the theoretical roots of technology emergence: an evolutionary perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 97-118, April.
    8. Woo, Seokkyun & Youtie, Jan & Ott, Ingrid & Scheu, Fenja, 2021. "Understanding the long-term emergence of autonomous vehicles technologies," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    9. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2018. "An indicator of technical emergence," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 35-49, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Porter, Alan L. & Garner, Jon & Carley, Stephen F. & Newman, Nils C., 2019. "Emergence scoring to identify frontier R&D topics and key players," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 628-643.
    2. Porter, Alan L. & Chiavetta, Denise & Newman, Nils C., 2020. "Measuring tech emergence: A contest," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    3. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2018. "An indicator of technical emergence," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 35-49, April.
    4. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    5. Xiaoyu Liu & Alan L. Porter, 2020. "A 3-dimensional analysis for evaluating technology emergence indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 27-55, July.
    6. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    7. Philip Shapira & Seokbeom Kwon & Jan Youtie, 2017. "Tracking the emergence of synthetic biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1439-1469, September.
    8. Zhang, Yi & Huang, Ying & Porter, Alan L. & Zhang, Guangquan & Lu, Jie, 2019. "Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 795-807.
    9. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    10. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    11. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    12. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
    13. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    14. Serhat Burmaoglu & Olivier Sartenaer & Alan Porter & Munan Li, 2019. "Analysing the theoretical roots of technology emergence: an evolutionary perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 97-118, April.
    15. Petros Gkotsis & Antonio Vezzani, 2016. "Technological diffusion as a recombinant process," JRC Working Papers on Corporate R&D and Innovation 2016-07, Joint Research Centre.
    16. Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    17. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    18. Guan, Jiancheng & Liu, Na, 2015. "Invention profiles and uneven growth in the field of emerging nano-energy," Energy Policy, Elsevier, vol. 76(C), pages 146-157.
    19. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    20. Konstantin Fursov & Alina Kadyrova, 2017. "How the analysis of transitionary references in knowledge networks and their centrality characteristics helps in understanding the genesis of growing technology areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1947-1963, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:111:y:2017:i:3:d:10.1007_s11192-017-2342-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.