IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v110y2017i2d10.1007_s11192-016-2194-9.html
   My bibliography  Save this article

Ruling out static latent homophily in citation networks

Author

Listed:
  • Peter Wittek

    (Barcelona Institute of Science and Technology
    University of Borås)

  • Sándor Darányi

    (University of Borås)

  • Gustaf Nelhans

    (University of Borås)

Abstract

Citation and coauthor networks offer an insight into the dynamics of scientific progress. We can also view them as representations of a causal structure, a logical process captured in a graph. From a causal perspective, we can ask questions such as whether authors form groups primarily due to their prior shared interest, or if their favourite topics are ‘contagious’ and spread through co-authorship. Such networks have been widely studied by the artificial intelligence community, and recently a connection has been made to nonlocal correlations produced by entangled particles in quantum physics—the impact of latent hidden variables can be analyzed by the same algebraic geometric methodology that relies on a sequence of semidefinite programming (SDP) relaxations. Following this trail, we treat our sample coauthor network as a causal graph and, using SDP relaxations, rule out latent homophily as a manifestation of prior shared interest only, leading to the observed patternedness. By introducing algebraic geometry to citation studies, we add a new tool to existing methods for the analysis of content-related social influences.

Suggested Citation

  • Peter Wittek & Sándor Darányi & Gustaf Nelhans, 2017. "Ruling out static latent homophily in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 765-777, February.
  • Handle: RePEc:spr:scient:v:110:y:2017:i:2:d:10.1007_s11192-016-2194-9
    DOI: 10.1007/s11192-016-2194-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-016-2194-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-016-2194-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    2. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    3. Garfield, Eugene, 2009. "From the science of science to Scientometrics visualizing the history of science with HistCite software," Journal of Informetrics, Elsevier, vol. 3(3), pages 173-179.
    4. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    5. Katherine W. McCain, 1986. "Cocited author mapping as a valid representation of intellectual structure," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 37(3), pages 111-122, May.
    6. Hicks, Diana, 2012. "Performance-based university research funding systems," Research Policy, Elsevier, vol. 41(2), pages 251-261.
    7. Pamela E. Sandstrom, 2001. "Scholarly communication as a socioecological system," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(3), pages 573-605, July.
    8. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    9. Eugene Garfield & A. I. Pudovkin & V. S. Istomin, 2003. "Why do we need algorithmic historiography?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 400-412, March.
    10. Katy Börner & Shashikant Penumarthy & Mark Meiss & Weimao Ke, 2006. "Mapping the diffusion of scholarly knowledge among major U.S. research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 415-426, September.
    11. Norman Kaplan, 1965. "The norms of citation behavior: Prolegomena to the footnote," American Documentation, Wiley Blackwell, vol. 16(3), pages 179-184, July.
    12. Pamela E. Sandstrom, 2001. "Scholarly communication as a socioecological system," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(3), pages 573-605, January.
    13. Liye Ma & Ramayya Krishnan & Alan L. Montgomery, 2015. "Latent Homophily or Social Influence? An Empirical Analysis of Purchase Within a Social Network," Management Science, INFORMS, vol. 61(2), pages 454-473, February.
    14. Howard D. White & Belver C. Griffith, 1981. "Author cocitation: A literature measure of intellectual structure," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 32(3), pages 163-171, May.
    15. Jerome K. Vanclay, 2012. "Impact factor: outdated artefact or stepping-stone to journal certification?," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 211-238, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Miranda Henrique & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Building direct citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 817-832, May.
    2. McLevey, John & McIlroy-Young, Reid, 2017. "Introducing metaknowledge: Software for computational research in information science, network analysis, and science of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 176-197.
    3. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    4. Pan, Xuelian & Yan, Erjia & Cui, Ming & Hua, Weina, 2018. "Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools," Journal of Informetrics, Elsevier, vol. 12(2), pages 481-493.
    5. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    6. Perianes-Rodriguez, Antonio & Waltman, Ludo & van Eck, Nees Jan, 2016. "Constructing bibliometric networks: A comparison between full and fractional counting," Journal of Informetrics, Elsevier, vol. 10(4), pages 1178-1195.
    7. Saurav Chandra Talukder & Zoltán Lakner, 2023. "Exploring the Landscape of Social Entrepreneurship and Crowdfunding: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    8. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    9. Chen, Kaihua & Zhang, Yi & Fu, Xiaolan, 2019. "International research collaboration: An emerging domain of innovation studies?," Research Policy, Elsevier, vol. 48(1), pages 149-168.
    10. Bo Liu & Wei Song & Qian Sun, 2022. "Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-30, November.
    11. Leydesdorff, Loet & Bornmann, Lutz & Marx, Werner & Milojević, Staša, 2014. "Referenced Publication Years Spectroscopy applied to iMetrics: Scientometrics, Journal of Informetrics, and a relevant subset of JASIST," Journal of Informetrics, Elsevier, vol. 8(1), pages 162-174.
    12. Prashant Sharma & Saurabh Sharma, 2023. "Mapping the Intellectual Structure of Mobile Payment Research: A Bibliometric Analysis," SAGE Open, , vol. 13(3), pages 21582440231, September.
    13. Katalin Orosz & Illés J. Farkas & Péter Pollner, 2016. "Quantifying the changing role of past publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 829-853, August.
    14. Pedro López-Rubio & Norat Roig-Tierno & Alicia Mas-Tur, 2020. "Regional innovation system research trends: toward knowledge management and entrepreneurial ecosystems," International Journal of Quality Innovation, Springer, vol. 6(1), pages 1-16, December.
    15. Pedro López-Rubio & Norat Roig-Tierno & Francisco Mas-Verdú, 2022. "Assessing the Origins, Evolution and Prospects of National Innovation Systems," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(1), pages 161-184, March.
    16. Aparisi Torrijo, Sofia & Ribes Giner, Gabriela, 2022. "Entrepreneurial leadership factors: a bibliometric analysis for the 2000-2020 period," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).
    17. B. Elango, 2019. "A Bibliometric Analysis of Franchising Research (1988–2017)," Journal of Entrepreneurship and Innovation in Emerging Economies, Entrepreneurship Development Institute of India, vol. 28(2), pages 223-249, September.
    18. Magdalena Olczyk, 2016. "A systematic retrieval of international competitiveness literature: a bibliometric study," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 6(3), pages 429-457, December.
    19. Jarneving, Bo, 2007. "Complete graphs and bibliographic coupling: A test of the applicability of bibliographic coupling for the identification of cognitive cores on the field level," Journal of Informetrics, Elsevier, vol. 1(4), pages 338-356.
    20. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Romero-Castro, Noelia María & Pérez-Pico, Ada María, 2020. "Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front," Journal of Business Research, Elsevier, vol. 115(C), pages 475-485.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:110:y:2017:i:2:d:10.1007_s11192-016-2194-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.